Tìm tất cả đa thức \(P\left(x\right)\) với hệ số nguyên, sao cho: Với mỗi số nguyên tố \(p\) và \(a,b\) nguyên thỏa mãn \(ab\equiv1\left(modp\right)\) thì \(P\left(a\right).P\left(b\right)\equiv1\left(modp\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(P\left(a\right)=P\left(b\right)=P\left(c\right)=P\left(d\right)=7\) nên \(P\left(x\right)-7=0\) có 4 nghiệm nguyên phân biệt
\(\Rightarrow P\left(x\right)-7=\left(x-a\right)\left(x-b\right)\left(x-c\right)\left(x-d\right)Q\left(x\right)\) với Q(x) là đa thức có giá trị nguyên khi x nguyên
Xét phương trình: \(P\left(x\right)-14=0\)
\(\Leftrightarrow P\left(x\right)-7=7\)
\(\Leftrightarrow\left(x-a\right)\left(x-b\right)\left(x-c\right)\left(x-d\right)Q\left(x\right)=7\) (1)
Do a;b;c;d phân biệt \(\Rightarrow\) vế trái là tích của ít nhất 4 số nguyên phân biệt khi x nguyên
Mà 7 là số nguyên tố nên chỉ có thể phân tích thành tích của 2 số nguyên phân biệt
\(\Rightarrow\) Không tồn tại x nguyên thỏa mãn (1) hay \(P\left(x\right)-14=0\) ko có nghiệm nguyên
Lời giải:
Đặt $f(x)=a_0+a_1x+a_2x^2+..+a_nx^n$ với $a_i$ nguyên với $i=\overline{0,n}$
Ta có:
\(f(a)=a_0+a_1a+a_2a^2+...+a_na^n; f(b)=a_0+a_1b+a_2b^2+...+a_nb^n\)
\(\Rightarrow f(a)-f(b)=a_1(a-b)+a_2(a^2-b^2)+...+a_n(a^n-b^n)\)
Dễ thấy: $a^j-b^j\vdots a-b$ với mọi $j\geq 1$ nên $f(a)-f(b)\vdots a-b$
Ta có đpcm.
Giả sử \(f\left(x\right)=m_nx^n+m_{n-1}x^{n-1}+...+m_1x+m_0\) với \(m_0;m_1;...;m_n\in Z\).
Ta có \(f\left(a\right)-f\left(b\right)=m_n\left(a^n-b^n\right)+m_{n-1}\left(a^{n-1}-b^{n-1}\right)+...+m_1\left(a-b\right)\).
Dễ thấy tổng trên chia hết cho a - b với mọi a, b nguyên.
Vậy ta có đpcm.
Giả sử f(x) = c0 + c1x + ... + cnxn với c0, c1, ..., cn là các số nguyên
f(a) - f(b) = (cn.an + ... + c1.a + c0) - (cn.bn + ... + c1.b + c0)
= cn(an - bn) + ... + c1(a - b) + (c0 - c0)
= cn(a - b)(an-1 + an-2b + ... + bn-1) + ... + c1(a - b)
= (a - b)(...) ⋮ (a - b)
Vậy bài toán đã được chứng minh
1. Tìm tất cả các bộ ba số nguyên tố $a,b,c$ đôi một khác nhau thỏa mãn điều kiện $$20abc<30(ab+bc+ca)<21abc$$ - Số học - Diễn đàn Toán học
2. [LỜI GIẢI] Hỏi có bao nhiêu số nguyên dương có 5 chữ số < - Tự Học 365