K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2021

1.

a. Ta có: \(AB^2+AC^2=6^2+8^2=36+64=100\)

\(BC^2=10^2=100\)

 \(\Rightarrow AB^2+AC^2=BC^2\) \(\Rightarrow\Delta\)ABC vuông tại A

b. \(\Delta\)ABC vuông tại A, đường cao AH. Ta có:

AB.AC = AH.BC

hay 6.8 = AH.10

=> AH = \(\dfrac{6.8}{10}=4.8\)

 

20 tháng 11 2017

Hai tam giác trên có các cạnh tương ứng bằng nhau 

có các góc tương ứng bằng nhau 

20 tháng 11 2017

Tam giác ABC và A'B'C' có:

 AB = A'B' = 2cm

BC = B'C' = 4 cm

AC = A'C' = 3 cm

=> Tam giác ABC = tam giác A'B'C' (c.c.c)

=> góc A = góc A'

     góc B = góc B'

     góc C = góc C'

13 tháng 2 2022

Áp dụng định lý Pi-ta-go ta có:
\(AB^2+AC^2=BC^2\\ \Rightarrow21^2+28^2=BC^2\\ \Rightarrow BC=\sqrt{21^2+28^2}\\ \Rightarrow BC=35\left(cm\right)\)

\(BC=\sqrt{AB^2+AC^2}=35\left(cm\right)\)

17 tháng 5 2018

Giải bài 25 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

ΔABC vuông tại A có BC2 = AB2 + AC2 (định lí Pitago)

⇒ BC2 = 32 + 42 = 25 ⇒ BC = 5 (cm)

Gọi M là trung điểm của BC ⇒ AM là trung tuyến.

Vì theo đề bài: trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên

Giải bài 25 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

10 tháng 3 2019

( bạn tự vẽ hình)

a, xét tam giác ABE và tam giác ACE có:

AE chung

AB=AC (gt)

góc BAE=góc CAE( vì AE là tia phân giác của góc BAC)

=> tam giác ABE=tam giác ACE

b, vì tam giác ABE=tam giác ACE( cmt)=> BE=CE( 2 cạnh tương ứng)(1)

=> góc BEA=góc CEA ( 2 góc tương ứng)

mà 2 góc này kề bù

=> góc BEA=góc CEA= 180 độ : 2= 90 độ 

=> AE vuông góc với BC (2)

từ (1) và (2) ta có AE là đường trung trực của BC.

22 tháng 2 2020

a, xét tam giác ABE và tam giác ACE có:
AE chung
AB=AC (gt)
góc BAE=góc CAE( vì AE là tia phân giác của góc BAC)
=> tam giác ABE=tam giác ACE
b, vì tam giác ABE=tam giác ACE( cmt)=> BE=CE( 2 cạnh tương ứng)(1)
=> góc BEA=góc CEA ( 2 góc tương ứng)
mà 2 góc này kề bù
=> góc BEA=góc CEA= 180 độ : 2= 90 độ 
=> AE vuông góc với BC (2)
từ (1) và (2) ta có AE là đường trung trực của BC.