K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2017

a, A = \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

b, Gọi UCLN(a2 + a - 1,a2 + a + 1) là d

Ta có: a2 + a - 1 \(⋮\)d

          a2 + a + 1 \(⋮\)d

=> (a2 + a - 1) - (a2 + a + 1) \(⋮\)d

=> 2 \(⋮\)d => d = {1;-1;2;-2}

Mà a2 + a - 1 = a(a + 1) - 1 lẻ => d lẻ => d không thể bằng 2;-2 => d = {1;-1}

Vậy A tối giản

5 tháng 2 2016

Tớ thiếu chỗ : Gọi ƯCLN ( a2+a-1; a2+a+1 ) là d 

5 tháng 2 2016

a ) Ta có \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

Điều kiện đúng A  - 1

b ) Gọi ƯCLN ( a2+a-1; a2+a+1 )

Vì a+ a + 1 = a ( a + 1 ) - 1 là số lẻ nên d là số lẻ

Mặt khác , 2 = [ ( a2+a+1 ) - ( a2+a-1 ) ] ⋮ d

Nên d = 1 tức là a2+a+1 và a2+a-1 là nguyên tố cùng nhau

Biểu thức A là phân số tối giản

a: \(A=\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{2\left(x-3\right)}{2-x}\)

\(=\dfrac{4+4x+x^2+4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\cdot\dfrac{2-x}{2\left(x-3\right)}\)

\(=\dfrac{5x^2+4x+4-4+4x-x^2}{\left(2+x\right)}\cdot\dfrac{1}{2\left(x-3\right)}\)

\(=\dfrac{4x^2+8x}{x+2}\cdot\dfrac{1}{2\left(x-3\right)}=\dfrac{4x\left(x+2\right)}{2\left(x+2\right)}\cdot\dfrac{1}{x-3}=\dfrac{2x}{x-3}\)

b: |x-2|=2

=>x-2=2 hoặc x-2=-2

=>x=0(nhận) hoặc x=4(nhận)

Khi x=0 thì \(A=\dfrac{2\cdot0}{0-3}=\dfrac{-2}{3}\)

Khi x=4 thì \(A=\dfrac{2\cdot4}{4-3}=8\)

c: A>0

=>x/x-3>0

=>x>3 hoặc x<0

=>x>3

15 tháng 6 2021

\(A=\dfrac{x-9}{3+\sqrt{x}}\) (đề như này pk?)

a) Để A có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\3+\sqrt{x}\ne0\left(lđ\right)\end{matrix}\right.\)\(\Rightarrow x\ge0\)

b) \(A=\dfrac{x-9}{3+\sqrt{x}}=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{3+\sqrt{x}}=\sqrt{x}-3\)

c) Với x=0 (tmđk) thay vào A ta được: \(A=\sqrt{0}-3=-3\)

Với x=-1 (ktm đk)

Với x=16 (tmđk) thay vào A ta được: \(A=\sqrt{16}-3=1\)

d) \(A\in Z\Leftrightarrow\sqrt{x}-3\in Z\Leftrightarrow\sqrt{x}\in Z\) \(\Leftrightarrow\) x là số chính phương

15 tháng 6 2021

Câu a em chx  hiểu lắm mong chị giải thích dùm em ạ

27 tháng 12 2017

12345678

28 tháng 12 2017

\(A=a\left(a+1\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+6\right)+36\)

\(A=a\left(a+6\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+1\right)+36\)

\(A=\left(a^2+6a\right)\left(a^2+6a+8\right)\left(a^2+6a+5\right)+36\)

Đặt t = a2 +6a. Khi đó phương trình trở thành:

\(A=t\left(t+8\right)\left(t+5\right)+36\)

\(A=t\left(t^2+13t+40\right)+36\)

\(A=t^3+13t^2+40t+36\)

\(A=t^3+2t^2+11t^2+22t+18t+36\)

\(A=t^2\left(t+2\right)+11t\left(t+2\right)+18\left(t+2\right)\)

\(A=\left(t+2\right)\left(t^2+11t+18\right)\)

\(A=\left(t+2\right)\left(t^2+2t+9t+18\right)\)

\(A=\left(t+2\right)\left[t\left(t+2\right)+9\left(t+2\right)\right]\)

\(A=\left(t+2\right)\left(t+2\right)\left(t+9\right)\)

\(A=\left(t+2\right)^2\left(t+9\right)\)

Thế t = a2 + 6a vào A ta được:

\(A=\left(a^2+6a+2\right)^2\left(a^2+6a+9\right)\)

\(A=\left(a+3\right)^2\left(a^2+6a+2\right)^2\)

\(A=\left[\left(a+3\right)\left(a^2+6a+2\right)\right]^2\)

Vậy với mọi số nguyên a thì giá trị của biểu thức A luôn là một số chính phương