Cho tam giác ABC có AC = 2AB. Trên cạnh AC lấy điểm M sao cho AM = AB. Trên tia đối của tia BA lấy điểm D sao cho BA = BD. Gọi K là giao điểm của DM và BC.
a,so sánh AK và AC
b, Chứng minh rằng KB = 1/2 KC
c, Qua C kẻ đường thẳng song song với AD, qua D kẻ đường thẳng song song với AC chúng cắt nhau tại E. Chứng minh rằng A, K, E thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là trung điểm của AK
Trong ∆ ADK ta có BH là đường trung bình của ∆ ADK.
⇒ BH // DK (tính chất đường trung bình của tam giác)
Hay BH // MK
Trong ∆ BCH ta có M là trung điểm của BC
MK // BH
⇒ CK = HK
AK = AH + HK = 2HK
Suy ra: AK = 2 KC ( vì HK =KC)
Từ B kẻ BH // AC
Ta có: AB = BD, BH // AC
=> BH là đường trung bình của \(\Delta ADK\)
=> \(BH=\dfrac{1}{2}AK\) (tính chất đường trung bình của tam giác)
Xét \(\Delta BHM\) và \(\Delta CKM\) có:
\(\widehat{KMC}=\widehat{BHM}\) (2 góc đối đỉnh)
CM = MB (M trung điểm CB)
\(\widehat{MBH}=\widehat{CKM}\) (KC // BH)
=> \(\Delta BHM=\Delta CKM\left(g.c.g\right)\)
=> KC = BH (2 cạnh tương ứng)
mà \(BH=\dfrac{1}{2}AK\) (cmt)
=> \(KC=\dfrac{1}{2}AK\)
\(\Rightarrow AK=2KC\left(đpcm\right)\)
Từ B kẻ BH // AC
Ta có: AB = BD, BH // AC
=> BH là đường trung bình của \(\Delta ADK\)
=>BH=\(\dfrac{1}{2}AK\)(tính chất đường trung bình của tam giác)
Xét \(\Delta BHM\)và \(\Delta CKM\) có :
\(\widehat{KMC}=\widehat{BMH}\) ( hai góc đối đỉnh )
CM=MB (M la ftrung điểm của CB)
\(\widehat{MBH}=\widehat{CKM}\) ( KC//BH )
=>\(\widehat{BHM}=\widehat{CKM}\)
=>KC = BH
mà BH=1/2 AK
=>\(KC=\dfrac{1}{2}AK\)
=>AK=2KC
=> đcpm
Qua B kẻ BH // AC , cắt DM tại H
Ta có {BH // AK ; AB = BD => BH là đường trung bình của tam giác ADK
=> AK=2BH (1)
Dễ dàng chứng minh được tam giác MKC = tam giác MBH (g.c.g)
=> BH = CK (2)
Từ (1) và (2) suy ra AK = 2CK
Qua B Kẻ BH // AC , cắt DM tại H
Ta có : BH // AK
AB // BD
=> BH là đường trung bình của tam giác ADK
=> AK = 2 BH (1)
· * Xét tam giác MKC và tam giác MBH .
CÓ : BM = CM ( M là trung điểm của BC)
Góc M1= Góc M2 ( 2 góc đối đỉnh)
Góc MKC = MBH ( = 90 *)* là độ
=> Tam giác MKC = Tam giác MBH ( g. c . g)
=> BH = KC ( 2 cạnh tương ứng )(2)
Từ (1), (2) suy ra được AK = 2 KC
a) Xét tam giác ABD và tam giác ACD:
AD chung.
AB = AC (gt).
BD = CD (D là trung điểm của BC).
\(\Rightarrow\Delta ABD=\Delta ACD\left(c-c-c\right).\)
b) Xét tam giác ABC: AB = AC (gt).
\(\Rightarrow\Delta ABC\) cân tại A.
Mà AD là trung tuyến (D là trung điểm của BC).
\(\Rightarrow\) AD là phân giác \(\widehat{BAC}\) (Tính chất tam giác cân).
Xét tam giác MAD và tam giác NAD:
AD chung.
AM = AN (gt).
\(\widehat{MAD}=\widehat{NAD}\) (AD là phân giác \(\widehat{BAC}\)).
\(\Rightarrow\Delta MAD=\Delta NAD\left(c-g-c\right).\)
\(\Rightarrow\) DM = DN (2 cạnh tương ứng).
c) Xét tam giác ADC và tam giác EDB:
DC = DB (D là trung điểm của BC).
AD = ED (gt).
\(\widehat{ADC}=\widehat{EDB}\) (Đối đỉnh).
\(\Rightarrow\Delta ADC=\Delta EDB\left(c-g-c\right).\)
\(\Rightarrow\widehat{CAD}=\widehat{BED}\) (2 góc tương ứng).
\(\Rightarrow\) AC // BE.
Mà \(DK\perp BE\left(gt\right).\)
\(\Rightarrow\) \(DK\perp AC.\left(1\right)\)
Ta có: \(\widehat{AMD}=\widehat{AND}\) \(\left(\Delta MAD=\Delta NAD\right).\)
Mà \(\widehat{AMD}=90^o\left(AM\perp MD\right).\)
\(\Rightarrow\widehat{AND}=90^o.\Rightarrow AC\perp ND.\left(2\right)\)
Từ (1); (2) \(\Rightarrow N;D;K\) thẳng hàng.