K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

để \(\frac{2n-7}{n-2}\) là số nguyên 

=> \(2n-7⋮n-2\)

=>\(2n-4-3⋮n-2\)

=> \(2\left(n-2\right)-3⋮n-2\)

=>\(3⋮n-2\)

=>\(n-2\inƯ\left(3\right)=\hept{\begin{cases}\\\end{cases}1;-1;-3;3}\)

n-21-13-3
n315-1

vậy n =3 ;1;5;-1

k mik nha

10 tháng 5 2017

2n-7chia hết cho n-2

2n-7 chia hết 2n-4

-3 chia hết 2n-4

2n-4 thuộc Ư(-3)

E hãy lập bảng các giá trị của 2n-4 rồi tính ra n nha

10 tháng 5 2017

Ta có \(\frac{2n-7}{n-2}\)\(\frac{2.\left(n-2\right)-5}{n-2}\)\(1-\frac{5}{n-2}\)

Suy ra : n - 2 thuộc Ư( 5 )

      => n - 2 thuộc { 1 , 5 }

      => n thuộc { 3 , 7 }

Vậy n = 3 hoặc n = 7

3 tháng 6 2018

\(\frac{2n^2+n-7}{n-2}=\frac{2n^2-4n+5n-10+3}{n-3}\)

                        \(=\frac{2n\left(n-2\right)+5\left(n-2\right)+3}{n-2}\)

                        \(=\frac{\left(2n+5\right)\left(n-2\right)+3}{n-2}\)

Để \(\frac{2n^2+n-7}{n-2}\)là số nguyên thì \(\left(2n+5\right)\left(n-2\right)+3⋮n-2\)

Mà \(\left(2n+5\right)\left(n-2\right)⋮n-2\Rightarrow3⋮n-2\)

\(\Rightarrow n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow n\in\left\{-1;1;3;5\right\}\)

       Vậy \(n\in\left\{-1;1;3;5\right\}.\)

3 tháng 6 2018

\(A=\frac{2n^2+n-7}{n-2}=\frac{\left(n-2\right)\left(2n+5\right)+3}{n-2}=2n+5+\frac{3}{n-2}\)
Để A nguyên thì \(\left(n-2\right)\inƯ\left(3\right)\)
Ta có bảng:

 

n-2-3-113
n-1135


Vậy n={-1;1;3;5}

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

25 tháng 9 2016

\(A=\frac{2n+7}{n+1}=\frac{n+1}{n+1}+\frac{n+1}{n+1}+\frac{5}{n+1}\)

\(2+\frac{5}{n+1}\)


 => \(\left(n+1\right)\in U\left(5\right)\)

=>

n+15-51-1
n4-60-2

Tíc mình nha!Kim Phương

10 tháng 8 2019

Ta có: Q = \(\frac{n^2-1}{2n-1}\)

=> 4Q = \(\frac{4n^2-4}{2n-1}=\frac{2n\left(n-1\right)+\left(2n-1\right)-3}{2n-1}=2n+1-\frac{3}{2n-1}\)

Để Q \(\in\)Z <=> 4Q \(\in\)Z <=> 3 \(⋮\)2n - 1

<=> 2n - 1 \(\in\)Ư(3) = {1; -1; 3; -3}

<=> n \(\in\){1; 0; 2; -1}

6 tháng 3 2018

để M là số nguyên 

\(\Rightarrow2n-7⋮n-5\Rightarrow2\left(n-5\right)+3.\)

\(\Rightarrow n-5\inƯ\left(3\right)=\left[\pm1;\pm3\right]\Rightarrow\)

+n - 5 = -1 \(\Rightarrow\)n = 4

+n - 5 = -3 \(\Rightarrow\)n = 2

+n - 5 = 1 \(\Rightarrow\)n = 6

+n - 5 = 3 \(\Rightarrow\)n = 8

6 tháng 3 2018

Để M là số nguyên

=> M thuộc Z

=> \(\frac{2n-7}{n-5}\)Thuộc Z

=> 2n - 7 \(⋮\)n - 5

=> 2n - 10 + 3 \(⋮\)n - 5

=> 2.( n - 5 ) + 3 \(⋮\)n - 5 mà 2 . ( n - 5 ) \(⋮\)n - 5 => 3 \(⋮\)n - 5

=> n - 5 thuộc Ư ( 3 ) = { - 3 ; - 1 ; 1 ; 3 }

=> n thuộc { - 2 ; 4 ; 6 ; 8 }

Vậy n thuộc { - 2 ; 4 ; 6 ; 8 }

23 tháng 2 2017

\(\frac{n^2-2n^2+3}{n-2}\)=\(\frac{n^2-3}{n-2}\)=\(\frac{2^2-4+7}{n-2}\)=\(\frac{\left(n-2\right)^2+7}{n-2}\)=\(\frac{\left(n-2\right)^2}{n-2}\)+\(\frac{7}{n-2}\)=n-2+\(\frac{7}{n-2}\)

n-2 là số nguyên => \(\frac{7}{n-2}\)cũng là số nguyên =>n-2 thuộc Ư(7)={1;7;-1;-7}

=> n=3;9;1;-5

Đúng thì k cho mình

23 tháng 2 2017

\(\frac{n^2-2n^2+3}{n-2}=\frac{-n^2+3}{n-2}=\frac{-\left(n^2-2^2\right)-1}{n-2}=\frac{-\left(n-2\right)\left(n+2\right)}{n-2}-\frac{1}{n-2}=-\left(n+2\right)-\frac{1}{n-2}\)

         Để PT trên là số nguyên thì:\(1⋮\left(n-2\right)\)hay \(\left(n-2\right)\inƯ\left(1\right)\)

                           Ư(1) là:[1,-1]

Do đó ta được bảng sau:

                 

n-2-11
n13

                  Vậy để PT nguyên thì n=1;3