Cho điểm A ( -2;0); B (0;4); C (1;1);D (-3;2)
a) Chứng minh 3 điểm A,B,D thẳng hàng; 3 điểm A,B,C không thẳng hàng
b) Tính diện tích tam giác ABC
Giúp tớ với 500 ae hoc24.vn!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2356r6ry74erer7ytgffdgrtyu7trfddfrtyu7ytfdxdftyu7tgfcxftyu87ytfgtyu78yutgfgtyu78yuffgtyu7uytgfcxfdty7yytf
(a) Sửa đề điểm \(D\left(-3;-2\right)\)
Gọi phương trình đường thẳng \(AB\) là \(\left(d\right):y=ax+b\). Suy ra, giá trị hoành độ và tung độ của \(A,B\) phải thỏa mãn hàm số. Ta sẽ có : \(\left\{{}\begin{matrix}0=a.\left(-2\right)+b\\4=a.0+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\).
Phương trình đường thẳng \(AB\) là \(\left(d\right):y=2x+4\).
Thay giá trị hoành độ và tung độ của \(D\) vào \(\left(d\right)\Rightarrow-2=2.\left(-3\right)+4\Leftrightarrow-2=-2\) (luôn đúng), do đó \(D\in\left(d\right)\Leftrightarrow A,B,D\) thẳng hàng.
Thay giá trị hoành độ và tung độ của \(C\) vào \(\left(d\right)\Rightarrow1=2.1+4\Leftrightarrow1=6\) (vô lí), do đó \(C\notin\left(d\right)\Leftrightarrow A,B,C\) không thẳng hàng.
(b) Áp dụng công thức khoảng cách giữa hai điểm có tọa độ \(\left(x_1;y_1\right),\left(x_2;y_2\right)\) là : \(d=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}\).
Ta suy ra được : \(\left\{{}\begin{matrix}AB=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}\\AC=\sqrt{\left(x_A-x_C\right)^2+\left(y_A-y_B\right)^2}\\BC=\sqrt{\left(x_B-x_C\right)^2+\left(y_B-y_C\right)^2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{\left(-2-0\right)^2+\left(0-4\right)^2}=2\sqrt{5}\\AC=\sqrt{\left(-2-1\right)^2+\left(0-1\right)^2}=\sqrt{10}\\BC=\sqrt{\left(0-1\right)^2+\left(4-1\right)^2}=\sqrt{10}\end{matrix}\right.\).
Ta thấy : \(\left\{{}\begin{matrix}AC^2+BC^2=\left(\sqrt{10}\right)^2+\left(\sqrt{10}\right)^2=20\\AB^2=\left(2\sqrt{5}\right)^2=20\end{matrix}\right.\)
\(\Rightarrow\Delta ABC\) vuông tại \(C\Rightarrow S_{ABC}=\dfrac{1}{2}BC.AC=\dfrac{1}{2}\sqrt{10}\cdot\sqrt{10}=5\left(đvdt\right)\)