K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn A

15 tháng 5 2023

Mình cảm ơn 

1 tháng 4 2016

G�c ?: G�c gi?a E, C, H G�c ?: G�c gi?a E, C, H ?o?n th?ng a: ?o?n th?ng [A, D] ?o?n th?ng b: ?o?n th?ng [A, B] ?o?n th?ng e: ?o?n th?ng [B, C] ?o?n th?ng f: ?o?n th?ng [C, D] ?o?n th?ng h: ?o?n th?ng [E, H] ?o?n th?ng i: ?o?n th?ng [E, A] ?o?n th?ng j: ?o?n th?ng [E, B] ?o?n th?ng k: ?o?n th?ng [E, D] ?o?n th?ng l: ?o?n th?ng [E, C] ?o?n th?ng m: ?o?n th?ng [H, C] A = (-1.48, 1.8) A = (-1.48, 1.8) A = (-1.48, 1.8) D = (2.3, 1.8) D = (2.3, 1.8) D = (2.3, 1.8) B = (-3.12, -0.08) B = (-3.12, -0.08) B = (-3.12, -0.08) ?i?m C: Giao ?i?m c?a c, d ?i?m C: Giao ?i?m c?a c, d ?i?m C: Giao ?i?m c?a c, d ?i?m H: (A + B) / 2 ?i?m H: (A + B) / 2 ?i?m H: (A + B) / 2 ?i?m E: ?i?m tr�n g ?i?m E: ?i?m tr�n g ?i?m E: ?i?m tr�n g

Kẻ SH vuông góc với AB. Do (SAB) vuông góc với đáy nên hình chiều của S trên (ABCD) chính là H.

Mặt khác tam giác SAB cân tại S nên H là trung điểm của AB.

\(CH=\sqrt{BH^2+BC^2}=\sqrt{\dfrac{a^2}{4}+a^2}=\dfrac{a\sqrt{5}}{2}\)

Góc giữa SC và đáy là góc SCH nên \(\widehat{SCH}=45^0\)

\(SH=CH.\tan 45^0=\dfrac{a\sqrt{5}}{2}\)

\(S_{ABCD}=a^2\)

Vậy \(V_{SABCD}=\dfrac{1}{3}.SH.S_{ABCD}=\dfrac{a^3\sqrt{5}}{6}\)

10 tháng 4 2019

bh tính kiểu gì vậy bạn

mà bạn xác định góc giữa sc và mặt đáy phải là góc SCA chứ

giải thích hộ mình với

16 tháng 6 2023

 Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).

Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A. 

Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A

 

16 tháng 6 2023

Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.

AH
Akai Haruma
Giáo viên
9 tháng 3 2021

Lời giải:

Do $SA\perp (ABCD)$ nên $\angle (SB, ABCD)=\angle (SB, AB)=\widehat{SBA}=45^0$

$\Rightarrow SAB$ là tam giác vuông cân tại $A$

$\Rightarrow SA=AB=a$ 

Áp dụng định lý Pitago: $SD=\sqrt{SA^2+AD^2}=\sqrt{a^2+(2a)^2}=\sqrt{5}a$

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

Lời giải:

$SA\perp (ABCD)$ nên $45^0=\angle (SB, (ABCD))=\angle (SB, AB)=\widehat{SBA}$

$\Rightarrow SA=AB=5$ (cm)

Thể tích khối chóp $S.ABCD$:

$V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.5.5^2=\frac{125}{3}$ (cm3)

Do \(\left(SC;\left(ABCD\right)\right)=45^0;SA\perp\left(ABCD\right)\)

nên \(\left\{{}\begin{matrix}\left(SC;AC\right)=45^0\\AS\perp AC\end{matrix}\right.\)\(\Rightarrow AS=AC=\sqrt{AB^2+BC^2}=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(\Rightarrow V_{S.ABCD}=\dfrac{1}{6}.\left(AD+BC\right).AB.AS\)

\(=\dfrac{1}{6}\left(2a+a\right).a.a\sqrt{2}=\dfrac{\sqrt{2}}{2}a^3\)

7 tháng 5 2017

Đáp án D.

19 tháng 4 2019

Giải bài tập Toán 11 | Giải Toán lớp 11

a) Tam giác ABD có AB = AD ( do ABCD là hình thoi)

=> Tam giác ABD cân tại A. Lại có góc A= 60o

=> Tam giác ABD đều.

Lại có; SA = SB = SD nên hình chóp S.ABD là hình chóp đều.

* Gọi H là tâm của tam giác ABD

=>SH ⊥ (ABD)

*Gọi O là giao điểm của AC và BD.

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

28 tháng 7 2018

Chọn đáp án B.