K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 5 2023

Lời giải:

$A=\frac{20x+15}{x^2+1}$

$\Rightarrow A(x^2+1)=20x+15$

$\Rightarrow Ax^2-20x+(A-15)=0(*)$

Vì $A$ tồn tại, nên pt $(*)$ luôn có nghiệm 

$\Rightarrow \Delta'=10^2-A(A-15)\geq 0$

$\Leftrightarrow A^2-15A-100\leq 0$

$\Leftrightarrow (A-20)(A+5)\leq 0$

$\Leftrightarrow -5\leq A\leq 20$

Vậy $A_{\min}=-5$

23 tháng 11 2019

\(A=x^2+3x-5=x^2+3x+\frac{9}{4}-\frac{29}{4}\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{29}{4}\ge-\frac{29}{4}\)

Vậy \(A_{min}=-\frac{29}{4}\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=-\frac{3}{2}\)

18 tháng 12 2018

\(B1,a,A=x^2-6x+11\)

               \(=\left(x^2-6x+9\right)+2\)

                \(=\left(x-3\right)^2+2\ge2\)

Dấu "=" <=> x=3

Vậy ..........

\(b,B=x^2-20x+101\)

        \(=\left(x^2-20x+100\right)+1\)

         \(=\left(x-10\right)^2+1\ge1\)

Dấu "=" <=> x = 10

Vậy .

\(2,a,A=4x-x^2+3\)

            \(=7-\left(x^2-4x+4\right)\)'

             \(=7-\left(x-2\right)^2\le7\)

Dấu ''='' <=> x = 2

Vậy .

\(b,B=-x^2+6x-11\)

       \(=-2-\left(x^2-6x+9\right)\)

        \(=-2-\left(x-3\right)^2\le-2\)

Dấu ""=" <=> x = 3

Vậy..

8 tháng 12 2021

a)Vì |x-1/2|≥0

|x-1/2|-3≥0-3

A=|x-1/2|-3≥-3

=>A≥-3

Dấu ''='' xảy ra khi

x-1/2=0

x=0+1/2

x=1/2

Vậy GTNN của biểu thức đã cho là -3 khi  x=1/2

b)

Vì |x-4|≥0

-|x-4|≤0

=>2/3-|x-4|≤2/3-0

2/3-|x-4|≤2/3

=>B=2/3-|x-4|≤2/3

B≤2/3

Dấu ''='' xảy ra khi

x-4=0

x=0+4

x=4

Vậy GTLN của biểu thức là 2/3 khi x=4

 

8 tháng 6 2017

\(A=x^2+4y^2+15-6x-8y\)

\(A=\left(x^2-6x+9\right)+\left(\left(2y\right)^2-8y+4\right)-9-4+15\)

\(A=\left(x-3\right)^2+\left(2y-2\right)^2+2\)

Có \(\left(x-3\right)^2\ge0\)với mọi x
     \(\left(2y-2\right)^2\ge0\)với mọi y
Do đó \(A\ge2\)

Vậy giá trị nhỏ nhất của A là 2 đạt được \(\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left(2y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}}\)

Câu b làm tương tự bạn sẽ tìm được giá trị nhỏ nhất của B là 4 đạt được \(\Leftrightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=\frac{1}{3}\end{cases}}\)

8 tháng 6 2017

\(A=x^2+4y^2+15-6x-8y\)

\(A=\left(x^2-6x+9\right)+\left(\left(2y\right)^2-8y+4\right)-9-4+15\)

\(A=\left(x-3\right)^2+\left(2y-2\right)^2-8y+4-9-4+15\)

\(c\text{ó}\left(x-3\right)^2\ge0-v\text{ới}-m\text{ọi}-x\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Bài 1:

$M=\frac{27}{x-15}-1$

Để $M$ min thì $\frac{27}{x-15}$ min. 

Để $\frac{27}{x-15}$ min thì $x-15$ là số âm lớn nhất 

$\Rightarrow x$ là số nguyên lớn nhất nhỏ hơn 15

$\Rightarrow x=14$

Khi đó: $M_{\min}=\frac{42-14}{14-15}=-28$

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Bài 2:

\(\left(\dfrac{1}{2}\right)^x+\left(\dfrac{1}{2}\right)^{x-4}=17\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}\left[\left(\dfrac{1}{2}\right)^4+1\right]=17\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}.\dfrac{17}{16}=17\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}=16=\left(\dfrac{1}{2}\right)^{-4}\)

$\Rightarrow x-4=-4\Leftrightarrow x=0$

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

29 tháng 9 2023

`a)D` xác định `<=>a-1 ne 0<=>a ne 1`

`b)` Với `a ne 1` có:

`D=([a-1]/[a^2+a+1]-[1-3a+a^2]/[(a-1)(a^2+a+1)]-1/[a-1]).[1-a]/[a^2+1]`

`D=[(a-1)^2-1+3a-a^2-a^2-a-1]/[(a-1)(a^2+a+1)].[-(a-1)]/[a^2+1]`

`D=[a^2-2a+1-1+3a-a^2-a^2-a-1]/[(-a^2-1)(a^2+a+1)]`

`D=[-a^2-1]/[(-a^2-1)(a^2+a+1)]=1/[a^2+a+1]`

`c)` Với `a ne 1` có:

`1/D=1/[1/[a^2+a+1]]=a^2+a+1=(a+1/2)^2+3/4`

Vì `(a+1/2)^2 >= 0 AA a ne 1`

   `=>(a+1/2)^2+3/4 >= 3/4 AA a ne 1`

  Hay `1/D >= 3/4 AA a ne 1=>1/D  _[mi n]=3/4`

Dấu "`=`" xảy ra `<=>a=-1/2` (t/m).