x2 + 4x + 8
tim nghiem
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng định lý Vi-et cho pt bậc 2 ta có:
\(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=2m-4\end{matrix}\right.\)
Khi đó, với $m\neq 2$, ta có:
\(\frac{1}{x_1}.\frac{1}{x_2}=\frac{1}{x_2x_2}=\frac{1}{2m-4}\)
\(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=\frac{2(m-1)}{2m-4}=\frac{m-1}{m-2}\)
Từ đây áp dụng định lý Vi-et đảo, \(\frac{1}{x_1}, \frac{1}{x_2}\) sẽ là nghiệm của pt:
\(X^2-\frac{m-1}{m-2}X+\frac{1}{2m-4}=0\)
Ta có: \(\Delta'=32>0\)
\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)
Mặt khác: \(T=\dfrac{x_1^2+x^2_2}{\sqrt{x_1}+\sqrt{x_2}}\)
\(\Rightarrow T^2=\dfrac{x_1^4+x^4_2+2x_1^2x_2^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(x_1^2+x_1^2\right)^2}{x_1+x_2+2\sqrt{x_1x_2}}\) \(=\dfrac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(12^2-2\cdot4\right)^2}{12+2\sqrt{4}}=1156\)
Mà ta thấy \(T>0\) \(\Rightarrow T=\sqrt{1156}=34\)
Bài làm:
Ta có: \(4x^2-10-\left(4x+1\right)x=0\)
\(\Leftrightarrow4x^2-10-4x^2-x=0\)
\(\Leftrightarrow x+10=0\)
\(\Rightarrow x=-10\)
Vậy x = 10 là nghiệm của PT
Ta có : x4 ≥ 0 ( với mọi x)
4x2 ≥ 0 (v...)
1 >0
Do đó : x4 +4x2 +1 > 0 (v...)
=> x4 +4x2 +1 vô nghiệm
Lời giải:
a) Ta thấy:
\(\Delta'=(m+1)^2-2m=m^2+1\geq 1>0, \forall m\in\mathbb{R}\)
Do đó pt luôn có hai nghiệm phân biệt với mọi $m$
b) Áp dụng định lý Viete của pt bậc 2 ta có:
\(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m\end{matrix}\right.\)
Do đó: \(x_1+x_2-x_1x_2=2(m+1)-2m=2\) là một giá trị không phụ thuộc vào $m$
Ta có đpcm.
Ta thấy : \(\hept{\begin{cases}x^4\ge0\forall x\\4x^2\ge0\forall x\end{cases}}\)
=> x4 + 4x2 +1 >0 với mọi x
=> Đa thức x4 + 4x2 + 1 vô nghiệm (đpcm)
Có \(x^2+4x+8=x^2+2.2.x+4+4\)
\(=x^2+2.2.x+2^2+4\)
\(=\left(x+2\right)^2+4\)(hằng đẳng thức)
Có biểu thức trên lớn hơn 0 nên đa thức vô nghiệm.
Chúc bạn học tốt^^
Có \(x^2+4x+8=x^2+2.2.x+4+4\)
\(=x^2+2.2.x+2^2+4\)
\(=\left(x+2\right)^2+4\)(hằng đẳng thức)
Có biểu thức trên lớn hơn 0 nên đa thức vô nghiệm.
Chúc bạn học tốt^^