K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(\frac{3^2}{20\cdot23}+\frac{3^2}{23\cdot26}+...+\frac{3^2}{77\cdot80}=\frac{1}{3}\cdot\left(\frac{1}{20}-\frac{1}{80}\right)=\frac{1}{3}\cdot\frac{3}{80}=\frac{1}{80}< 1\)             ( đpcm )

13 tháng 5 2019

Đặt : \(A=\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}\)

\(\Rightarrow3A=\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\)

\(\Rightarrow3A=\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\)

\(\Rightarrow3A=\frac{1}{20}+\left(\frac{1}{23}-\frac{1}{23}\right)+\left(\frac{1}{26}-\frac{1}{26}\right)+...+\left(\frac{1}{77}-\frac{1}{77}\right)-\frac{1}{80}\)

\(\Rightarrow3A=\frac{1}{20}-\frac{1}{80}\)

\(\Rightarrow3A=\frac{3}{80}\)

\(\Rightarrow A=\frac{3}{80}:3\)

\(\Rightarrow A=\frac{1}{80}\)

Vì 80 > 79 nên \(\frac{1}{80}< \frac{1}{79}\)hay \(A< \frac{1}{79}\)

~ Hok tốt ~

13 tháng 5 2019

\(\frac{1}{20\cdot23}+\frac{1}{23\cdot26}+\frac{1}{26\cdot29}+...+\frac{1}{77\cdot80}\)

\(< \frac{1}{3}\left[\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+\frac{3}{26\cdot29}+...+\frac{3}{77\cdot80}\right]\)

\(< \frac{1}{3}\left[\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right]\)

\(< \frac{1}{3}\left[\frac{1}{20}-\frac{1}{80}\right]\)

\(< \frac{1}{3}\left[\frac{4}{80}-\frac{1}{80}\right]\)

\(< \frac{1}{3}\cdot\frac{3}{80}=\frac{1}{80}< \frac{1}{79}(đpcm)\)

4 tháng 5 2019

Ta có :

\(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\)

\(=\frac{1}{3}\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)

\(=\frac{1}{3}\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)

\(=\frac{1}{3}\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=\frac{1}{3}.\frac{3}{80}\left(\frac{3}{80}< 1\right)\)

\(\Leftrightarrow\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}< \frac{1}{3}\left(đpcm\right)\)

4 tháng 5 2019

\(M=\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77x80}\)

\(M=\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\)

\(M=\frac{1}{20}-\frac{1}{80}=\frac{3}{80}\)

\(\frac{3}{80}=\frac{3x9}{80x9}=\frac{27}{720};\frac{1}{9}=\frac{1x80}{9x80}=\frac{80}{720}\)

Vì \(\frac{27}{720}< \frac{80}{720}\Rightarrow\frac{3}{80}< \frac{1}{9}\Rightarrow M< \frac{1}{9}\)

          #~Will~be~Pens~#

18 tháng 3 2019

a) 22+36=58     96−32=64     62−30=32

89−47=42     44+44=88     45−5=40

12 tháng 3 2016

k rùi biết

14 tháng 8 2023

1.

a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(2A=2+2^2+2^3+....+2^{2008}\)

b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)

\(=2^{2008}-1\) (bạn xem lại đề)

 

2.

\(A=1+3+3^1+3^2+...+3^7\)

a. \(2A=2+2.3+2.3^2+...+2.3^7\)

b.\(3A=3+3^2+3^3+...+3^8\)

\(2A=3^8-1\)

\(=>A=\dfrac{2^8-1}{2}\)

 

3

.\(B=1+3+3^2+..+3^{2006}\)

a. \(3B=3+3^2+3^3+...+3^{2007}\)

b. \(3B-B=2^{2007}-1\)

\(B=\dfrac{2^{2007}-1}{2}\)

 

4.

Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)

a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)

b.\(4C-C=4^7-1\)

\(C=\dfrac{4^7-1}{3}\)

 

5.

\(S=1+2+2^2+2^3+...+2^{2017}\)

\(2S=2+2^2+2^3+2^4+...+2^{2018}\)

\(S=2^{2018}-1\)

4:

a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6

=>4*C=4+4^2+...+4^7

b: 4*C=4+4^2+...+4^7

C=1+4+...+4^6

=>3C=4^7-1

=>\(C=\dfrac{4^7-1}{3}\)

5:

2S=2+2^2+2^3+...+2^2018

=>2S-S=2^2018-1

=>S=2^2018-1