K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

=\(\frac{1}{2}-\frac{1}{50}\)

=\(\frac{12}{25}\)

Dấu chấm là dấu nhân,bạn bít rồi đúng ko

\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{2}-\frac{1}{50}=\frac{25}{50}-\frac{1}{50}=\frac{24}{50}=\frac{12}{25}\)

Công thức : \(\frac{a}{b\left(b+a\right)}=\frac{1}{b}-\frac{1}{b+a}\)

\(\frac{2a}{b\left(b+a\right)\left(b+2a\right)}=\frac{1}{b\left(b+a\right)}-\frac{1}{\left(b+a\right)\left(b+2a\right)}\)

\(\frac{3a}{b\left(b+a\right)\left(b+2a\right)\left(b+3a\right)}=\frac{1}{b\left(b+a\right)\left(b+2a\right)}-\frac{1}{\left(b+a\right)\left(b+2a\right)\left(b+3a\right)}\)

2 tháng 3 2022

biết làm rồi thì giúp gì

25 tháng 8 2021

Câu hỏi là gìv

25 tháng 8 2021

x=35/19

y=-25/19

z=127/19

1 tháng 1 2016

vậy thì tổng của : -1+(-2)+(-3)+.........+(-49) = -(1+2+3+..........+49) = -1225

19 tháng 5 2015

xem ở đây bạn nè : http://olm.vn/hoi-dap/question/53910.html

14 tháng 5
S= =50/50+50/49+50/48+…..+50/2 =50.(1/50+1/49+1/48+...+1/4+1/3+1/2) =50 P= P=(1/49+1)+(2/48+1)+.…+(48/2+1)+1 P= 50/49+50/48+...+50/2+50/50=1 vây s/p = 1/50
19 tháng 7 2021

undefined

Giải:

\(\left(x-1\right)+\left(x-2\right)+...+\left(x-100\right)=-50\) 

\(\Rightarrow100x+\left(-1+-2+...+-100\right)=-50\) 

\(\Rightarrow100x-\left(1+2+...+100\right)=-50\) 

Số số hạng \(\left(1+2+...+100\right)\) là: \(\left(100-1\right):1+1=100\) 

Tổng dãy \(\left(1+2+...+100\right)\) là: \(\left(1+100\right).100:2=5050\) 

\(\Rightarrow100x-5050=-50\) 

\(\Rightarrow100x=-50+5050\) 

\(\Rightarrow100x=5000\) 

\(\Rightarrow x=5000:100\) 

\(\Rightarrow x=50\) 

Chúc bạn học tốt!

22 tháng 7 2023

1/

\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)

\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)

Đặt 

\(A=1.2+2.3+3.4+...+99.100\)

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)

\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)

Đặt

\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)

\(\Rightarrow N=A-B\)

2/

Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được

\(A=1^2+2^2+3^2+...+100^2\) 

Tính như câu 1

3/ Làm như bài 4

4/

\(S=1^2+3^2+5^2+...+99^2=\)

\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)

\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)

Đặt

\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\) 

Đặt

\(A=1.3+3.5+5.7+...+99.101\)

\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)

\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)

\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)

\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)

\(\Rightarrow S=A-2B\)

GH
22 tháng 7 2023

Bài 1:

\(N=1^2+2^2+3^3+...+99^2\)

\(N=1.1+2.2+3.3+...+99.99\)

\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)

\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)

\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)

Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)

+) Tính \(A=1.2+2.3+3.4+...+99.100\)

Ta có:

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)

\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(3A=99.100.101\)

\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)

+) Tính \(B=1+2+3+...+99\)

\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)

\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)

\(\Rightarrow N=A-B=333300-4950=328350\)

\(\Rightarrow N=328350\)

 

 

\(A=\left(\dfrac{1}{49}-\dfrac{1}{2^2}\right)\left(\dfrac{1}{49}-\dfrac{1}{3^2}\right)\cdot...\cdot\left(\dfrac{1}{49}-\dfrac{1}{100^2}\right)\)

\(=\left(\dfrac{1}{49}-\dfrac{1}{7^2}\right)\left(\dfrac{1}{49}-\dfrac{1}{2^2}\right)\cdot...\cdot\left(\dfrac{1}{49}-\dfrac{1}{100^2}\right)\)

\(=\left(\dfrac{1}{49}-\dfrac{1}{49}\right)\left(\dfrac{1}{49}-\dfrac{1}{4}\right)\cdot...\cdot\left(\dfrac{1}{49}-\dfrac{1}{10000}\right)\)

=0