Tìm x ϵ Z để \(\dfrac{x^2}{x+1}\) ϵ Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
Lời giải:
Điều kiện: $x\neq 3$
Để $A=\frac{2(x-3)+5}{3-x}=-2+\frac{5}{3-x}$ nguyên thì $\frac{5}{3-x}$ nguyên.
Với $x$ nguyên thì điều này xảy ra khi $3-x$ là ước của $5$
$\Rightarrow 3-x\in\left\{\pm 1; \pm 5\right\}$
$\Rightarrow x\in\left\{4; 2; 8; -2\right\}$ (thỏa mãn)
a: ĐểA nguyên thì x^2+2x+x+2-3 chia hết cho x+2
=>-3 chia hết cho x+2
=>x+2 thuộc {1;-1;3;-3}
=>x thuộc {-1;-3;1;-5}
b: B nguyên khi x^2+x+3 chia hết cho x+1
=>3 chia hết cho x+1
=>x+1 thuộc {1;-1;3;-3}
=>x thuộc {0;-2;2;-4}
a) Ta có: \(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}+\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-1\right):\left(\dfrac{25-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+5}-1\right):\left(\dfrac{25-x-\left(x-9\right)+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+5}-\dfrac{\sqrt{x}+5}{\sqrt{x}+5}\right):\left(\dfrac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\dfrac{\sqrt{x}-\sqrt{x}-5}{\sqrt{x}+5}:\dfrac{x+9}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-5}{\sqrt{x}+5}\cdot\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{x+9}\)
\(=\dfrac{-5\left(\sqrt{x}-3\right)}{x+9}\)
Để P nguyên thì \(2\sqrt{x}-1⋮\sqrt{x}+1\)
\(\Leftrightarrow-3⋮\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}+1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow\sqrt{x}+1\in\left\{1;3\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;2\right\}\)
hay \(x\in\left\{0;4\right\}\)
b: \(B=\dfrac{2x-8+x+20}{\left(x+4\right)\left(x-4\right)}=\dfrac{3x+12}{\left(x+4\right)\left(x-4\right)}=\dfrac{3}{x-4}\)
3/ Ta có:
\(A=\dfrac{1-2x}{x+3}\)
\(A=\dfrac{-2x+1}{x+3}\)
\(A=\dfrac{-2x-6+7}{x+3}\)
\(A=\dfrac{-2\left(x+3\right)+7}{x+3}\)
\(A=-2+\dfrac{7}{x+3}\)
A nguyên khi \(\dfrac{7}{x+3}\) nguyên
⇒ 7 ⋮ \(x+3\)
\(\Rightarrow x+3\inƯ\left(7\right)\)
\(\Rightarrow x+3\in\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{-2;-4;4;-10\right\}\)
\(\Leftrightarrow\sqrt{x}-2\in\left\{-1;1;5\right\}\)
hay \(x\in\left\{1;9;49\right\}\)
\(\dfrac{4}{x}-\dfrac{y}{2}=\dfrac{1}{4}\Leftrightarrow\dfrac{8-xy}{2x}=\dfrac{1}{4}\Leftrightarrow\dfrac{16-2xy}{4x}=\dfrac{x}{4x}\)
\(\Rightarrow16-2xy=x\Leftrightarrow x+2xy=16\Leftrightarrow x\left(1+2y\right)=16\)
\(\Rightarrow x;1+2y\inƯ\left(16\right)=\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)
x | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 | 16 | -16 |
2y + 1 | 16 | -16 | 8 | -8 | 4 | -4 | 2 | -2 | 1 | -1 |
y | 15/2 ( ktm ) | -17/2 ( ktm ) | 7/2 ( ktm ) | -9/2 ( ktm ) | 3/2 ( ktm ) | -5/2 ( ktm ) | 1/2 ( ktm ) | -3 / 2 ( ktm ) | 0 | -1 |
\(Q=\dfrac{\sqrt{x}+6}{\sqrt{x}-2}\left(đk:x\ge0,x\ne4\right)=\dfrac{\sqrt{x}-2}{\sqrt{x}-2}+\dfrac{8}{\sqrt{x}-2}=1+\dfrac{8}{\sqrt{x}-2}\in Z\)
\(\Rightarrow\sqrt{x}-2\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
Do \(x\ge0,x\ne4\)
\(\Rightarrow x\in\left\{0;1;9;16;36;100\right\}\)
Đkxđ: x # 4
Q = 1 + 8/(sqrt(x) - 2)
Q nguyên --> sqrt(x) - 2 là ước của 8
Do sqrt(x) >=0 nên sqrt(x) - 2 >= -2
TH1: sqrt(x) - 2 = -2 <=> x = 0 (thỏa)
TH2: sqrt(x) - 2 = -1 <=> x = 1 (thỏa)
Th3: sqrt(x) - 2 = 1 <=> x = 9(thỏa)
TH4: sqrt(x) - 2 = 2<=> x = 16 (thỏa)
Th5: sqrt(x) - 2 = 4 <=> x = 36 (thỏa)
Th6: sqrt(x) - 2 = 8 <=> x = 100 (thỏa)
Để A nguyên thì x^2 chia hết cho x+1
=>x^2-1+1 chia hết cho x+1
=>\(x+1\in\left\{1;-1\right\}\)
=>\(x\in\left\{0;-2\right\}\)