Tìm các số tự nhiên n sao cho n^2+7 là số chí phương
MIK đang gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n + 7 = n + 2 + 5 chia hết cho n + 2
=> 5 chia hết cho n + 2 thì n+7 chia hết cho n+2
=> n+2 thuộc tập cộng trừ 1, cộng trừ 5
kẻ bảng => n = -1; -3; 3; -7
b) n+1 là bội của n-5
=> n+1 chia hết cho n-5
=> n-5 + 6 chia hết cho n-5
=> Để n+1 chia hết cho n-5 thì 6 chia hết cho n-5
=> n-5 thuộc tập cộng trừ 1; 2; 3; 6
kẻ bảng => n = 6; 4; 7; 3; 8; 2; 11; -1
a)Ta có: (n+7)\(⋮\)(n+2)
\(\Rightarrow\) (n+2+5)\(⋮\)(n+2)
Mà: (n+2)\(⋮\) (n+2)
\(\Rightarrow\) 5\(⋮\)(n+2)
\(\Rightarrow\) n+2\(\in\) Ư(5)={1;-1;5;-5}
\(\Rightarrow\) n\(\in\){-1;-3;3;-7}
Câu c bạn tham khảo tại đây:
Câu hỏi của Edogawa Conan - Toán lớp 6 - Học toán với OnlineMath
\(3n-3+5⋮n-1\)
\(\Leftrightarrow3\left(n-1\right)+5⋮n-1\)
có 3(n-1) chia hết cho n-1
\(\Rightarrow5⋮n-1\)
=> n-1 thuộc ước của 5
tức là:
n-1=5
n-1=-5
n-1=1
n-1=-1
Giả sử n - 19 = a2; n + 44 = b2 (a; b thuộc tập hợp số tự nhiên)
=> b2 - a2 = 63 => (b - a)(b + a) = 63
Rõ ràng a + b > b - a (tức 2a > 0 do a là số tự nhiên và do 63 không phải là số chính phương nên a + b khác b - a => 2a khác 0)
và a + b > 0 => b - a > 0
Ta có: 63 = 3.21 = 7.9
TH1: \(\hept{\begin{cases}a+b=21\\b-a=3\end{cases}\Rightarrow\hept{\begin{cases}a=9\\b=12\end{cases}}}\)
TH2: \(\hept{\begin{cases}a+b=9\\b-a=7\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=8\end{cases}}}\)
Thế vào ta có:
TH1: \(\hept{\begin{cases}n-19=a^2=81\\n+44=b^2=144\end{cases}}\Rightarrow\hept{\begin{cases}n=100\\n=100\end{cases}}\Rightarrow n=100\)(nhận)
TH2: \(\hept{\begin{cases}n-19=a^2=1\\n+44=b^2=64\end{cases}}\Rightarrow\hept{\begin{cases}n=20\\n=20\end{cases}}\Rightarrow n=20\)(nhận)
Vậy n = 100 hay n = 20 thì thỏa ycbt
ta co n^2+3n=a^2
suy ra 4n^2+12n=4a^2
suy ra (2n)^2+2.2n.3+9=4a^2+9
suy ra (2n+3)^2-(2a)2=9
suy ra (2n+3-2a)(2n+3+2a)=9
suy ra tung cai thuoc uoc cua 9
tu lam not nhe
Vì n − 7 là số chính phương nên đặt n − 7 = a (n, a ∈N) -
⇒ n² — a² = 7⇒ (n + a) (n − a) = 7⇒ n+a; n + a ЄƯ (7) - 7=n+a;n+a€Ư(7)
⇒ n+a; n − a € {±1; ±7}
Vì 7 dương nên (n+a)(n-a)=74n+a và n-a cùng dương (do n, a ∈N*) và n- a<n+a.
Do đó (n +a) (n −a)=7=7.1
n+ a = 7 n- a = 1 =n=4; a= 3 (thỏa mãn)
Vậy n=4
n2+7 là SCP
Vì n^2+7 là SCP nên đặt n^2+7=a^2 ( n,a thuộc N*)
=> a^2-n^2=7=> ( a+n).(a-n)=7 => a+n;a-n thuộc (7)
=> a+n;a-n thuộc {+ 7;-7;-1;-1}
Vì 7 là số dương => (a+n).(a-n)=7 => a+n và a-n đều là số dương
Và a+n>a-n
=> a+n= 7
a-n= 1
=> a=4
n=3