D=1/2+1/2^2+1/2^3+...+1/2^9.Tính câu này hộ mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+10\right)}{1.10+2.9+3.8+...+10.1}\)
\(=\frac{\left(1+1+...+1\right)+\left(2+2+...+2\right)+...+\left(10\right)}{10.1+8.2+....+1.10}\)
\(=\frac{1.10+2.9+....+10.1}{1.10+2.9+...+10.1}=1\)
\(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+...+98\right)}{1.98+2.97+3.96+...+97.2+98.1}\)
\(A=\frac{1.98+2.97+3.96+...+98.1}{1.98+2.97+3.96+...+98.1}=1\)
B = 1 + 5 + 52 + 53 + ... + 510
B = 50 + 51 + 52 + 53 + ... + 510
5B = 51 + 52 + 53 + 54 + ... + 511
4B = 5B - B = 511 - 1
B = \(\frac{5^{11}-1}{4}\)
Bạn tự tính nha mình không dùng máy tính :v
\(\dfrac{1}{9}-\left(2x-y\right)^2\)
\(=\left(\dfrac{1}{3}\right)^2-\left(2x-y\right)^2\)
\(=\left[\dfrac{1}{3}-\left(2x-y\right)\right]\left[\dfrac{1}{3}+\left(2x-y\right)\right]\)
\(=\left(\dfrac{1}{3}-2x+y\right)\left(\dfrac{1}{3}+2x-y\right)\)
1) (x-3)(x2+6x+9) = x3+6x2+9x-3x2-18x-27 = x3+3x2-9x-27
2) n ở đâu bạn?
\(\frac{1}{2}-\frac{1}{3}=\frac{3}{6}-\frac{2}{6}=\frac{1}{6}\)
\(\frac{1}{4}\cdot\frac{1}{5}=\frac{1}{20}\)
\(\frac{1}{9}+\frac{1}{8}=\frac{8}{72}+\frac{9}{72}=\frac{17}{72}\)
\(\frac{1}{2}:\frac{1}{8}=\frac{1}{2}\cdot8=4\)
1/2 - 1/3 = 1/6
1/4 x 1/5 = 1/20
1/9 + 1/8 = 17/72
1/2 : 1/8 = 8/2 = 4
Mn ơi ủng hộ mik nhé !
\(A=\left(\dfrac{1}{49}-\dfrac{1}{2^2}\right)\left(\dfrac{1}{49}-\dfrac{1}{3^2}\right)\cdot...\cdot\left(\dfrac{1}{49}-\dfrac{1}{100^2}\right)\)
\(=\left(\dfrac{1}{49}-\dfrac{1}{7^2}\right)\left(\dfrac{1}{49}-\dfrac{1}{2^2}\right)\cdot...\cdot\left(\dfrac{1}{49}-\dfrac{1}{100^2}\right)\)
\(=\left(\dfrac{1}{49}-\dfrac{1}{49}\right)\left(\dfrac{1}{49}-\dfrac{1}{4}\right)\cdot...\cdot\left(\dfrac{1}{49}-\dfrac{1}{10000}\right)\)
=0
\(D=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^9}\)
\(\Rightarrow2D=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^8}\)
\(\Rightarrow2D-D=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^8}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^9}\right)\)
\(\Rightarrow D=1-\dfrac{1}{2^9}\)