Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số
d) 3 - 2x ≤ 4
e) 5x - 2 ≤ 2x + 8
f) 2(x - 3) + 12 ≤ x + 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-\frac{2}{4}-\frac{2}{3}\ge5x-\frac{9}{12}\)
\(\Leftrightarrow x-\frac{7}{6}\ge5x-\frac{3}{4}\)
\(\Leftrightarrow-4x\ge\frac{5}{12}\)
\(\Leftrightarrow-\frac{5}{56}\ge x\)
c: =>2x+4>=2x+2-3
=>4>=-1(luôn đúng)
a: 5x+10>3x+3
=>2x>-7
=>x>-7/2
a) 3x+2>2b-3
\(\Leftrightarrow\)?
b) 5x-1>4x+3
\(\Leftrightarrow\)5x-4x>3+1
\(\Leftrightarrow\)x>4
Vậy phương trình có tập nghiệm S={x|x>4}
c)2-x/3>3-2x/5
\(\Leftrightarrow\)2-3>(-2x/5)+(x/3)
\(\Leftrightarrow\)-1>-x/15
\(\Leftrightarrow\)1<x/15
\(\Leftrightarrow\)x>1/15
Vậy phương trình có tập nghiệm S={x|x>1/15}
a: 2x-1>=5
nên 2x>=6
hay x>=3
b: \(\dfrac{x-2}{3}>=x-\dfrac{x-1}{2}\)
=>2x-4>=6x-3(x-1)
=>2x-4>=6x-3x+3
=>2x-4>=3x+3
=>-x>=7
hay x<=-7
a.\(2x-1\ge5\)
\(\Leftrightarrow2x\ge6\)
\(\Leftrightarrow x\ge3\)
Vậy \(S=\left\{x|x\ge3\right\}\)
b.\(\dfrac{x-2}{3}\ge x-\dfrac{x-1}{2}\)
\(\Leftrightarrow\dfrac{2\left(x-2\right)}{6}\ge\dfrac{6x-3\left(x-1\right)}{6}\)
\(\Leftrightarrow2\left(x-2\right)\ge6x-3\left(x-1\right)\)
\(\Leftrightarrow2x-4\ge6x-3x+3\)
\(\Leftrightarrow-x\ge7\)
\(\Leftrightarrow x\le7\)
Vậy \(S=\left\{x|x\le7\right\}\)
d: =>-2x<=1
=>x>=-1/2
e: =>3x<=10
=>x<=10/3
f: =>2x-6+12<=x+2
=>2x+6<=x+2
=>x<=-4