\(M=\left(-32\right)^{27}\) và \(N=\left(-18\right)^{41}\) so sánh M và N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(32^{27}=\left(2^5\right)^{27}=2^{135}\)
\(16^{39}=\left(2^4\right)^{39}=2^{156}\)
mà \(2^{135}< 2^{156}\)
nên \(32^{27}< 16^{39}\)
mà \(16^{39}< 18^{39}\)
nên \(32^{27}< 18^{39}\)
\(\Leftrightarrow-32^{27}>-18^{39}\)
\(\Leftrightarrow\left(-32\right)^{27}>\left(-18\right)^{39}\)
a: \(log_2\left(mn\right)=log_2\left(2^7\cdot2^3\right)=7+3=10\)
\(log_2m+log_2n=log_22^7+log_22^3=7+3=10\)
=>\(log_2\left(mn\right)=log_2m+log_2n\)
b: \(log_2\left(\dfrac{m}{n}\right)=log_2\left(\dfrac{2^7}{2^3}\right)=7-3=4\)
\(log_2m-log_2n=log_22^7-log_22^3=7-3=4\)
=>\(log_2\left(\dfrac{m}{n}\right)=log_2m-log_2n\)
a) \(\log_2\left(mn\right)=\log_2\left(2^7.2^3\right)=\log_22^{7+3}=\log_22^{10}=10.\log_22=10.1=10\)
\(\log_2m+\log_2n=\log_22^7+\log_22^3=7\log_22+3\log_22=7.1+3.1=7+3=10\)
b) \(\log_2\left(\dfrac{m}{n}\right)=\log_2\dfrac{2^7}{2^3}=\log_22^4=4.\log_22=4.1=4\)
\(\log_2m-\log_2n=\log_22^7-\log_22^3=7.\log_22-3\log_22=7.1-3.1=4\)