chứng minh: x2 - 3x + 6=0 vô nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(VT=\left(x^2+1\right)\left(x^2-x+1\right)\left(x^2-x+2\right)\)
\(pt\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)\left(x^2-x+2\right)=0\)
Mà:
\(x^2+1>0\)
\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(x^2-x+2=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)
Vậy pt vô nghiệm
\(x^2+3x+4=0\)
\(\Leftrightarrow x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=-\dfrac{7}{4}\left(VL\right)\)
Vậy ĐPCM
\(x^2+3x+4=0\Leftrightarrow x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}=0\)
\(\Leftrightarrow x^2+2.x.\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2+\dfrac{7}{4}=0\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}=0\)
Ta có \(\left(x+\dfrac{3}{2}\right)^2\ge0,\forall x\)
\(\Rightarrow\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0,\forall x\)
Vậy phương trình vô nghiệm.
\(x^4-2x^3+4x^2-3x+2=0\\ \Leftrightarrow x^4-2x^3+x^2+3x^2-3x+2=0\\ \Leftrightarrow x^2\left(x^2-2x+1\right)+\left(3x^2-3x+2\right)=0\\ \Leftrightarrow x^2\left(x-1\right)^2+\left(3x^2-3x+2\right)=0\)
Vì \(x^2\left(x-1\right)^2\ge0\) và dễ dàng chứng minh được \(3x^2-3x+2>0\) nên pt vô nghiệm
\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{CM vô số nghiệm}\)
\(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)
Ta có:\(x^2-3x+6=0\)
\(\Rightarrow x^2-2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2+\frac{15}{4}=0\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{15}{4}=0\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2=-\frac{15}{4}\)
Vì x2 không thể âm
Suy ra PT vô nghiệm