Chứng minh rằng S=11+22+33+...+20392039 không là lũy thừa của một số nguyên dương với số mũ lớn hơn 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(p-4=a^4\)với \(a\inℕ\). Dễ thấy \(p>5\)thì a>1
\(\Rightarrow p=a^4+4=\left(a^2\right)^2+2a^2+2a^2+4-4a^2\)
\(=\left(a^2+2\right)^2-\left(2a\right)^2=\left(a^2+2-2a\right)\left(a^2+2+2a\right)\)
Với \(a>1\)thì \(a^2+2-2a>1\)và \(a^2+2+2a>1\)nên
\(\left(a^2+2-2a\right)\left(a^2+2+2a\right)\)là hợp số hay p là hớp số ( vô lí vì \(p\in P\))
Do đó p là snt lớn hơn 5 thì p-4 không thể là lũy thừa bậc 4 của 1 số tự nhiên
Chúc bạn học tốt !!!
Làm bằng pascal thì những bài như thế này thì test lớn chạy không nổi đâu bạn
#include <bits/stdc++.h>
using namespace std;
long long n,a,b;
int main()
{
cin>>n;
a=1;
while (pow(a,3)<=n)
{
a++;
}
if (pow(a,3)==n) cout<<"YES";
else cout<<"NO";
cout<<endl;
b=1;
while (pow(5,b)<=n) do b++;
if (pow(5,b)==n) cout<<"YES";
else cout<<"NO";
cout<<endl<<pow(n,n)%7;
return 0;
}