Hình nào không phải là hình tứ giác?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác \(ABCD\) ta có:
\(AB = CD\) (gt)
\(AD = BC\) (gt)
Suy ra: \(ABCD\) là hình bình hành
b) Xét tứ giác \(EFGH\) ta có:
\(\widehat {\rm{E}} = \widehat G\) (gt)
\(\widehat F = \widehat H\) (gt)
Suy ra \(EFGH\) là hình bình hành
c) Ta có: \(\widehat J = \widehat {\rm{K}} = 60^\circ \) (gt)
Mà hai góc ở vị trí so le trong
Suy ra \(IJ\) // \(KL\) (1)
Ta có: \(\widehat K + \widehat L = 60^\circ + 120^\circ = 180^\circ \)
Mà hai góc ở vị trí trong cùng phía
Suy ra \(JK\;{\rm{//}}\;IL\) (2)
Từ (1), (2) suy ra \(IJKL\) là hình bình hành
d) Xét tứ giác \(MNPQ\) ta có:
\(O\) là trung điểm của \(NQ\) (do \(OQ = ON\))
\(O\) là trung điểm của \(MP\) (do \(OP = OM\))
Suy ra \(MNPQ\) là hình bình hành
e) Tứ giác \(TSRU\) không là hình bình hành
g) Ta có: \(\widehat {\rm{V}} + \widehat {\rm{X}} = 75^\circ + 105^\circ = 180^\circ \)
Mà hai góc ở vị trí trong cùng phía
Suy ra: \(VZ\) // \(XY\)
Xét tứ giác \(VZYX\) ta có:
\(VZ\) // \(XY\) (cmt)
\(VZ = XY\) (gt)
Suy ra \(VZYX\) là hình bình hành
Đặt ê ke như hình vẽ để kiểm tra xem mỗi tứ giác có hay không hai cạnh song song.
+ Tứ giác ABCD có AB // CD nên là hình thang.
+ Tứ giác EFGH không có hai cạnh nào song song nên không phải hình thang.
+ Tứ giác KMNI có KM // IN nên là hình thang.
bạn vẽ hình rồi lấy compa quay xem có trong hình tròn k là đc
Hình màu tím, màu vàng, màu cam, màu đỏ