Chứng minh rằng : x2 - 2x + 2 không có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2-2x+2\) \(=x^2-2x+1+1\)
\(=\left(x^2-2x+1\right)+1\)
\(=\left(x-1\right)^2+1\)
Vì (x - 1)^2 \(\ge\) 0 nên (x - 1)^2 + 1 \(\ge\)1
Vậy đa thức trên ko có nghiệm
Ta có: x2 - 2x + 2 = x2 - 2x + 1 + 1 = (x - 1)2 + 1 \(\ge\)1
Vậy pt vô nghiệm
a. Thay x = 2 vào vế trái của phương trình (1), ta có:
22 – 5.2 + 6 = 4 – 10 + 6 = 0
Vế trái bằng vế phải nên x = 2 là nghiệm của phương trình (1).
Thay x = 2 vào vế trái của phương trình (2), ta có:
2 + (2 – 2)(2.2 +1) = 2 + 0 = 2
Vế trái bằng vế phải nên x = 2 là nghiệm của phương trình (2).
Vậy x = 2 là nghiệm chung của hai phương trình (1) và (2).
b. Thay x = 3 vào vế trái của phương trình (1), ta có:
32 – 5.3 + 6 = 9 – 15 + 6 = 0
Vế trái bằng vế phải nên x = 3 là nghiệm của phương trình (1).
Thay x = 3 vào vế trái của phương trình (2), ta có:
3 + (3 – 2)(2.3 + 1) = 3 + 7 = 10 ≠ 2
Vì vế trái khác vế phải nên x = 3 không phải là nghiệm của phương trình (2).
Vậy x = 3 là nghiệm của phương trình (1) nhưng không phải là nghiệm của phương trình (2).
c. Hai phương trình (1) và (2) không tương đương nhau vì x = 3 không phải là nghiệm chung của hai phương trình.
Để phương trình có nghiệm thì f(x)=0
⇔x2-2x+2016=0
⇔ (x-1)2+2015=0
⇔ (x-1)2=-2015 (vô lí do (x-1)2≥0)
Vậy,phương trình vô nghiệm
F(x)=x2−2x+2016F(x)
F(x)=x2−2x+1+2015
F(x)=x2−x−x+1+2015
=x(x−1)−(x−1)+2015
=(x−1)^2+2015
Vì (x−1)2+2015≥2015>0 với mọi x ∈ R
=>F(x) vô nghiệm (đpcm)
Ta có 2x^10 >= 0 ; x^8 >= 0 ; 2 > 0
=> 2x^10 + x^8 + 2 > 0
Vậy pt ko có nghiệm
Vì `x^10 = (x^2)^5 >=0, x^8 = (x^2)^6` >=0, 2 >0`
`=> x^10 + x^8 + 2 >= 0 + 0 + 2 = 2 > 0`
`=>` Đa thức vô nghiệm
Giả sử đa thức P(x) tồn tại một nghiệm n nào đó thỏa mãn ( n là số thực)
Khi đó: P(x) = x2 -2x + 2=0
x.x- x-x +2=0
x(x-1) - (x-1) +1 = 0
(x-1)(x-1) = -1
=> (x-1)2 = -1 mà (x-1)2 luôn \(\ge\) 0 với mọi x (vô lí)
Vậy điều giả sử là sai, đa thức P(x) vô nghiệm
Lời giải:
$2M(x)=2x^4+2x^3+4x^2+2=x^4+(x^4+2x^3+x^2)+3x^2+2$
$=x^4+(x^2+x)^2+3x^2+2\geq 2>0$ với mọi $x$
$\Rightarrow M(x)>0$ với mọi $x$
$\Rightarrow$ đa thức $M(x)$ vô nghiệm.
Ta có: x² + 2x + 2
= x² + 2x + 1 + 1
= (x² + 2x + 1) + 1
= (x + 1)² + 1
Do (x + 1)² ≥ 0 ∀x ∈ R
=> (x + 1)² + 1 ≥ 1 > 0 ∀x ∈ R
=> x² + 2x + 2 > 0 ∀x ∈ R
=> đpcm
A=x2+2x+2=x2+2.x.1+12+1=(x+1)2+1
Vì\(\left(x+1\right)^2\ge0\)=>(x+1)2+1>0
=> A >0 =>A vô nghiệm (đpcm)
Ta có: A = x^2 + 2x +2
= x^ 2 +x + x +1 + 1
= (x^2 + x) + (x+1) + 1
= x(x+1) + (x+1) + 1
= (x+1)(x+1) + 1
= (x+1)^2 +1
Vì (x+1)^2 \(\ge\) 0 (với mọi x) nên (x+1)^2 + 1 \(\ge\)1 > 0 (với mọi x)
Vậy đa thức A ko có nghiệm
= x2-2x+1+1= (x-1)2+1>0
Cho :
x 2 - 2x + 2 = 0
x 2 - 2x + 1 + 1 = 0
( x - 1 ) 2 + 1 = 0 ( vô lý )
Do ( x - 1 ) 2 > = 0 => ( x - 1 ) 2 + 1 > = 1 > 0
=> x 2 - 2 x + 2 không thể có giá trị là 0
Vậy x 2 - 2x + 2 không có nghiệm