2013x y + y x 1/2013 - 2013=1/2013
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)
\(=\frac{xz+z+1}{xz+z+1}=1\)
=>đpcm
2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1
= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1
= xz/1+xz+z + 1/z+1+xz + z/xz+z+1
= xz+1+x/1+xz+x = 1 (đpcm)
Đặt \(g\left(x\right)=x^{2015}-x^{2014}+x^{2013}-...+x-1\)
Dễ thấy: \(f\left(x\right)=x^{2016}-2013\times g\left(x\right)\Rightarrow f\left(2012\right)=2012^{2016}-2013\times g\left(2012\right)\)(a)
Ta có: \(\left(x+1\right)\times g\left(x\right)=\left(x+1\right)\left(x^{2015}-x^{2014}+x^{2013}-...+x-1\right)\)
\(\Rightarrow\left(x+1\right)\times g\left(x\right)=x^{2016}-1\)
\(\Rightarrow\left(2012+1\right)\times g\left(2012\right)=2012^{2016}-1\)hay: \(2013\times g\left(2012\right)=2012^{2016}-1\)
Thay vào (a) ta có: \(f\left(2012\right)=2012^{2016}-\left(2012^{2016}-1\right)=1\).
f(x) = x2013 - 2013x2012 + 2013x2011 - 2013x2010 + .... + 2013x - 1
= x2013 - (2012 + 1)x2012 + (2012 + 1)x2011 - (2012 + 1)x2010 + .... + (2012 + 1)x - 1
= x2013 - (x + 1)x2012 + (x + 1)x2011 - (x + 1)x2010 + .... + (x + 1)x - 1
= x2013 - x . x2012 - 1 . x2012 + x . x2011 + 1 . x2011 - x . x2010 - 1 . x2010 + ... + x . x + 1 . x - 1
= x2013 - x2013 - x2012 + x2012 + x2011 - x2011 - x2010 + .... + x2 + x - 1
= x - 1 = 2012 - 1 = 2011
Đặt \(\frac{x}{2011}=\frac{y}{2012}=\frac{z}{2013}=k\)
\(\Rightarrow\hept{\begin{cases}x=2011k\\y=2012k\\z=2013k\end{cases}}\)
+) Ta có : \(\frac{2012z-2013y}{2011}=\frac{2012.2013k-2013.2012k}{2011}=0\)
\(\frac{2013x-2011z}{2012}=\frac{2013.2011k-2011.2013k}{2012}=0\)
\(\frac{2011y-2012x}{2013}=\frac{2011.2012k-2012.2011k}{2013}=0\)
Do đó : \(\frac{2012z-2013y}{2011}=\frac{2013x-2011z}{2012}=\frac{2011y-2012x}{2013}\left(=0\right)\) ( đpcm )
\(\sqrt{x-2013}+x^3=\sqrt{y-2013}+y^3\)
\(\Leftrightarrow\sqrt{x-2013}-\sqrt{y-2013}+x^3-y^3=0\)
\(\Leftrightarrow\dfrac{x-y}{\sqrt{x-2013}+\sqrt{y-2013}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(\dfrac{1}{\sqrt{x-2013}+\sqrt{y-2013}}+\left(x^2+xy+y^2\right)\right)=0\)
\(\Leftrightarrow x=y\)
\(\Rightarrow B=\dfrac{2013x+2014y}{2013y+2014x}=1\)
Ở phần dấu tương đương thứ 3, có cần phải đặt điều kiện x, y khác 2013 không bạn vì nếu x,y =2013 thì mẫu của phân số bằng 0
Quy đồng vế trái ta có
\(\frac{4026}{x^4+x^2+1}=\frac{2014}{x.\left(x^4+x^2+1\right)}\)
Lại quy đồng 2 vế ta được
\(\frac{4026.x}{x.\left(x^4+x^2+1\right)}=\frac{2014}{x.\left(x^4+x^2+1\right)}\)
Suy ra: 4026.x =2014
<=>\(x=\frac{2014}{4026}\)
rút gọn là xong.OK?
\(2013.y+y.\frac{1}{2013}-2013=\frac{1}{2013}\)
\(\Rightarrow2013.y+y.\frac{1}{2013}=\frac{1}{2013}+2013\)
\(\Rightarrow y.\left(2013+\frac{1}{2013}\right)=2013+\frac{1}{2013}\)
\(\Rightarrow y=1\)