Bài 6: Tính tổng
S=\(3+\frac{3}{2}+\frac{3}{2^2}+...\frac{3}{2^9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(A) \(\frac{2}{3} + \frac{{ - 4}}{6} = \frac{4}{6} + \frac{{ - 4}}{6} = 0\) => A sai
(B) \(\frac{2}{3}.\frac{{ - 1}}{5} = \frac{{ - 2}}{{15}}\) mà \(\frac{{3 - 2}}{5} = \frac{1}{5}\) => B sai
(C) \(\frac{2}{3} - \frac{3}{5} = \frac{{10}}{{15}} - \frac{9}{{15}} = \frac{1}{{15}}\) => C đúng
(D) \(\frac{3}{5}:\frac{3}{{ - 5}} = \frac{3}{5}.\frac{{ - 5}}{3} = \frac{{ - 15}}{{15}} = - 1\) => D sai
=> Chọn C.
Câu 2: Ta có \(S=6^2+18^2+30^2+...+126^2\)
\(S=6^2\left(1^2+3^2+5^2+...+21^2\right)\)
\(=6^2.1771=36.1771=63756\)
a, \(A=\frac{2}{5}+\frac{-1}{6}-\frac{3}{4}-\frac{-2}{3}\)
\(A=\left(\frac{2}{5}-\frac{3}{4}\right)+\left(\frac{-1}{6}-\frac{-2}{3}\right)\)
\(A=\left(\frac{8}{20}-\frac{15}{20}\right)+\left(\frac{-3}{18}-\frac{-12}{18}\right)\)
\(A=\frac{-7}{20}+\frac{1}{2}\)
\(\Rightarrow A=\frac{-7}{20}+\frac{10}{20}=\frac{3}{20}\)
b, \(B=\frac{7}{10}-\frac{-3}{4}+\frac{-5}{6}-\frac{1}{5}+\frac{-2}{3}\)
\(B=\left(\frac{7}{10}-\frac{1}{5}\right)+\left(\frac{-5}{6}+\frac{-2}{3}\right)-\frac{-3}{4}\)
\(B=\left(\frac{7}{10}-\frac{2}{10}\right)+\left(\frac{-5}{6}+\frac{-4}{6}\right)-\frac{-3}{4}\)
\(B=\frac{1}{2}+\frac{-3}{2}-\frac{-3}{4}\)
\(B=\frac{2}{4}+\frac{-6}{4}-\frac{-3}{4}\)
\(\Rightarrow B=\frac{2+-6+3}{4}=\frac{-1}{4}\)
c, \(C=\frac{\left(\frac{1}{2}-0,75\right)\times\left(0,2-\frac{2}{5}\right)}{\frac{5}{9}-1\frac{1}{12}}\)
\(C=\frac{\left(\frac{1}{2}-\frac{3}{4}\right)\times\left(\frac{1}{5}-\frac{2}{5}\right)}{\frac{5}{9}-\frac{1\times12+1}{12}}\)
\(C=\frac{\left(\frac{2}{4}-\frac{3}{4}\right)\times\left(\frac{-1}{5}\right)}{\frac{5}{9}-\frac{13}{12}}\)
\(C=\frac{\left(\frac{-1}{4}\right)\times\left(\frac{-1}{5}\right)}{\frac{60}{108}-\frac{117}{108}}\)
\(C=\frac{\frac{1}{20}}{\frac{-19}{36}}=\frac{1}{20}\div\frac{-19}{36}=\frac{1}{20}\times\frac{36}{-19}\)
\(\Rightarrow C=\frac{36}{-380}=\frac{-9}{95}\)
d, \(D=\frac{\frac{2}{3}+\frac{2}{7}-\frac{1}{4}}{-1-\frac{3}{7}+\frac{3}{28}}\)
\(D=\frac{\frac{56}{84}+\frac{24}{84}-\frac{21}{84}}{\frac{-10}{7}+\frac{3}{28}}\)
\(D=\frac{\frac{59}{84}}{\frac{-40}{28}+\frac{2}{28}}=\frac{59}{84}\div\frac{-37}{28}=\frac{59}{84}\times\frac{28}{-37}\)
\(\Rightarrow D=\frac{1652}{-3108}=\frac{-59}{111}\)
bài 1:
\(\frac{6}{11}+\frac{1}{3}+\frac{5}{11}\)
\(=\left(\frac{6}{11}+\frac{5}{11}\right)+\frac{1}{3}\)
\(=\frac{11}{11}+\frac{1}{3}=1+\frac{1}{3}=\frac{3}{3}+\frac{1}{3}=\frac{4}{3}\)
bài 2:
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}\)
\(=\left(\frac{1}{2}+\frac{1}{20}\right)+\left(\frac{1}{6}+\frac{1}{12}\right)\)
\(=\frac{11}{20}+\frac{1}{4}=\frac{11}{20}+\frac{5}{20}=\frac{15}{20}=\frac{3}{4}\)
bài 3:
a) \(\frac{3}{2}\cdot\frac{4}{5}\cdot\frac{2}{3}=\left(\frac{3}{2}\cdot\frac{2}{3}\right)\cdot\frac{4}{5}=1\cdot\frac{4}{5}=\frac{4}{5}\)
b) \(\frac{6}{7}\cdot\frac{5}{3}\cdot\frac{7}{6}=\left(\frac{6}{7}\cdot\frac{7}{6}\right)\cdot\frac{5}{3}=1\cdot\frac{5}{3}=\frac{5}{3}\)
bài 4:
a) \(\frac{2}{5}\cdot\frac{1}{4}+\frac{3}{4}\cdot\frac{2}{5}=\frac{2}{5}\cdot\left(\frac{1}{4}+\frac{3}{4}\right)=\frac{2}{5}\cdot1=\frac{2}{5}\)
b) \(\frac{6}{11}:\frac{2}{3}+\frac{5}{11}:\frac{2}{3}=\left(\frac{6}{11}+\frac{5}{11}\right):\frac{2}{3}=1:\frac{2}{3}=\frac{3}{2}\)
Bài 1:
6/11 + 1/3 + 5/11
= ( 6/11 + 5/11) + 1/3
= 11/11 + 1/3
= 1 + 1/3
= 3/3 +1/3
= 4/3
Bài 2:
1/2 + 1/6 + 1/12 + 1/20
= ( 1/2 + 1/6 + 1/12 ) + 1/20
= ( 6/12 + 2/12 + 1/12 ) + 1/20
=9/12 + 1/20
= 3/4 +1/20
= 15/20 + 1/20
= 16/20 = 4/5
Bài 3:
a) \(\frac{3}{2}\times\frac{4}{5}\times\frac{2}{3}\) \(=\left(\frac{3}{2}\times\frac{2}{3}\right)\times\frac{4}{5}\)\(=1\times\frac{4}{5}=\frac{4}{5}\)
b) \(\frac{6}{7}\times\left(\frac{5}{3}\times\frac{7}{6}\right)\) \(=\frac{6}{7}\times\frac{35}{18}\)\(=\frac{1\times5}{7\times3}=\frac{5}{21}\)
Bài 4:
a) 2/5 x 1/4 + 3/4 x 2/5
= 2/5 x ( 1/4 + 3/4)
= 2/5 x 1
= 2/5
b) 6/11 : 2/3 +5/11 : 2/3
= ( 6/11 + 5/11) x 3/2
= 11/11 x 3/2
= 1 x 3/2
= 3/2
....
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
=> \(S=3\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
Đặt \(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
=> \(2A=2+1+\frac{1}{2}+\frac{1}{2^8}\)
=> \(A=2A-A=2-\frac{1}{2^9}\)
=> \(S=3A=3\left(2-\frac{1}{2^9}\right)=6-\frac{3}{2^9}\)