K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

Có a,b,c>0;a+b>c,b+c>a,c+a>b

=>a+b-c>0,b+c-a>0,c+a-b>0

=>c2(a+b-c)>0,a2(b+c-a)>0,b2(c+a-b)>0

=>c2(a+b-c)+a2(b+c-a)+b2(c+a-b)>0

=>(đẳng thức đề bài) > 0

24 tháng 1 2017

TA  có \(a^3+b^3+c^3\ge3abc\Rightarrow-a^3-b^3-c^3\le-3abc\)

Cần chứng minh \(a^2b+b^2c+c^2a+ca^2+bc^2+ab^2-3abc\ge0\)

\(=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(a+c\right)-3abc\)

\(\ge abc+abc+abc-3abc=0\)

28 tháng 1 2021

444448888855555695+777+6666555888852652522222222222222222256585965

28 tháng 1 2021

Đặt A=2a2b2+2c2a2+2b2c2 - a4 - b4 - c4

A= - ( a4 + b4 + c4 - 2(ab)2 - 2(bc)2-2(ca)2)

A= - (a4 + b4 + c4 - 2(ab)2 - 2(bc)2-2(ca)2 - 4(ca)2)

áp dụng hàng đẳng thức:

(a2-b2+c2)=a4+b4+c4-2(ab)2-2(bc)2+2(ca)2

A= - ( (a2-b2+c2)-4(ca)2)

A= - (a2-b2+c2-2ca) (a2-b2+c2+2ca)

CHÚC BẠN HỌC TỐT##

17 tháng 7 2016


A = 2a2b+ 2b2c+ 2a2c− a− b− c4

<=> A = 4a2c− ( a4+b+ c− 2a2b+ 2a2c− 2b2c)

<=> A = 4a2c− ( a− b+ c2)2

<=> A = ( 2ac + a− b+ c) ( 2ac − a+ b− c)

<=> A = [ (a+c)− b] ( b− (a−c)2)

<=> A = ( a+b+c) (a+c−b) (b+a−c) (b−a+c)
Mà a, b, c là 3 cạnh của tam giác nên: Mà a, b, ca, b, c là 33 cạnh của tam giác nên:\

a+b+c>0

a+c−b>0

b+a−c>0

b−a+c>

=> (a+b+c)(a+c−b)(b+a−c)(b−a+c)>0

A>0 (Dpcm)