K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2017

\(\frac{n+1}{2n+3}\)

Gọi ƯCLN(n + 1, 2n + 3) là a

Ta có:

n + 1\(⋮\)a

\(\Rightarrow\)2(n + 1)\(⋮\)a

\(\Leftrightarrow\)2n + 2\(⋮\)a

2n + 3\(⋮\)a

\(\Rightarrow\)(2n + 3) - (2n + 2)\(⋮\)a

\(\Rightarrow\)1\(⋮\)a

\(\Rightarrow\)a = 1

29 tháng 4 2017

\(\frac{2n+1}{3n+2}\)

Gọi ƯCLN(2n + 1, 3n + 2) là b

Ta có:

2n + 1\(⋮\)b

\(\Rightarrow\)3.(2n + 1)\(⋮\)b

\(\Leftrightarrow\)6n + 3\(⋮\)b (1)

3n + 2\(⋮\)b

\(\Rightarrow\)2.(3n + 2)\(⋮\)b

\(\Leftrightarrow\)6n + 4\(⋮\)b (2)

Từ (1), (2) ta có:

(6n + 4) - (6n + 3)\(⋮\)b

\(\Leftrightarrow\)1\(⋮\)b

\(\Rightarrow\)b = 1

Vậy ƯCLN(2n + 1, 3n + 2) là 1

\(\Rightarrow\)Phân số tối giản

23 tháng 7 2016

a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)

=> n + 1 chia hết cho d; 2n + 3 chia hết cho d

=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d

=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(n+1; 2n+3) = 1

=> n + 1 và 2n + 3 là 2 số nguyên tố cùng nhau

Câu b lm tương tự

7 tháng 6 2016

a) Đặt ƯCLN(n+1; 2n+3) = d

=> (2n + 3) - (n + 1) chia hết cho d

=> (2n + 3) - [2.(n + 1)] chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 1 chia hết cho d => d = 1

Do ƯCLN(n+1; 2n+3) = 1 nên \(\frac{n+1}{2n+3}\) tối giản

b) Đặt ƯCLN(2n+3; 4n+8) = d

=> (4n + 8) - (2n + 3) chia hết cho d

=> (4n + 8) - [2.(2n + 3)] chia hết cho d

=> (4n + 8) - (4n + 6) chia hết cho d

=> 2 chia hết cho d => d \(\in\) {1; 2}

Nhưng d khác 2 vì d là ước chung của 2 số lẻ nên d = 1

Do ƯCLN(2n+3; 4n+8) = 1 nên \(\frac{2n+3}{4n+8}\) tối giản 

7 tháng 6 2016

a) \(\frac{n+1}{2n+3}\)

Đặt ƯCLN(n+1; 2n+3) = d

=> n + 1 \(⋮d\) và 2n + 3 \(⋮d\)

=> (2n + 3) - (n + 1) \(⋮d\)

=> (2n + 3) - [2.(n + 1)] \(⋮d\)

=> (2n + 3) - (2n + 2) \(⋮d\)

=> 1 \(⋮d\)

=> d = 1

Do ƯCLN(n+1; 2n+3) = 1 nên phân số \(\frac{n+1}{2n+3}\) tối giản

b) \(\frac{2n+3}{4n+8}\)

Đặt ƯCLN(2n+3;4n+8) = d

=> 2n+3 \(⋮d\) và 4n+8\(⋮d\)

=> (4n + 8) - (2n + 3) \(⋮d\)

=> (4n + 8) - [2.(2n + 3)] \(⋮d\)

=> (4n + 8) - (4n + 6) \(⋮d\)

=> 2 chia hết cho d

=> d {1; 2}

Vì 2n + 3 là số lẻ, 4n + 8 là số chẵn nên ƯC(2n+3;4n+8) là 1 số lẻ

=> \(d\ne2\Rightarrow d=1\)

Do ƯCLN(2n+3; 4n+8) = 1 nên phân số \(\frac{2n+3}{4n+8}\) tối giản 

5 tháng 5 2019

a, \(\frac{n+2}{n+3}\)

Gọi \(d=ƯCLN\left(n+2,n+3\right)\)

\(\Rightarrow\hept{\begin{cases}n+2⋮d\\n+3⋮d\end{cases}}\)

\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy phân số \(\frac{n+2}{n+3}\)là p/số tối giản

5 tháng 5 2019

b, \(\frac{n+1}{2n+3}\)

Gọi \(d=ƯCLN\left(n+1,2n+3\right)\)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy...

14 tháng 11 2017

a) ta chứng mk tử và mẫu là 2 số nguyên tố cùng nhau 

mk làm mẫu 1 câu nha

Gọi d là UCLN(n+1;2n+3)

=>n+1 \(⋮\)<=>2(n+1)\(⋮\)d<=>4n+2 chia hết cho d

=>4n+3 chia hết cho d

=> 4n+3-4n-2 chia hết cho d

<=> 1 chia hết cho d=> d= 1

d=1=>\(\frac{n+1}{2n+3}\)tối giản

14 tháng 11 2017

b) Gọi d là UCLN(2n+3;4n+8)

=>2n+3 \(⋮\)d<=>2(2n+3)\(⋮\)d<=> 4n+6 \(⋮\)d

=>4n+8\(⋮\)d

=>4n+8-4n-6\(⋮\)d<=>2 chia hết cho d=> d=1,2

mà 2n+3 là số lẻ nên ko có ước chẵn là 2=> d=1

vây \(\frac{2n+3}{4n+8}\)tối giản

14 tháng 2 2016

Gọi d là ƯCLN ( n + 1 ; 2n + 3 )

=> n + 1 ⋮ d => 2.( n + 1 ) ⋮ d => 2n + 2 ⋮ d      ( 1 )

=> 2n + 3 ⋮ d => 1.( 2n + 3 ) ⋮ d => 2n + 3 ⋮ d   ( 2 )

Từ ( 1 ) và ( 2 ) => [ ( 2n + 3 ) - ( 2n + 2 ) ] ⋮ d

=> 1 ⋮ d => d = + 1

Vì ƯCLN ( n + 1 ; 2n + 3 ) = 1 nên \(\frac{n+1}{2n+3}\)  là p/s tối giản

Câu 2 làm tương tự

14 tháng 2 2016

Gọi d là ƯCLN ( n + 1 ; 2n + 3 )

=> n + 1 ⋮ d => 2.( n + 1 ) ⋮ d => 2n + 2 ⋮ d      ( 1 )

=> 2n + 3 ⋮ d => 1.( 2n + 3 ) ⋮ d => 2n + 3 ⋮ d   ( 2 )

Từ ( 1 ) và ( 2 ) => [ ( 2n + 3 ) - ( 2n + 2 ) ] ⋮ d

=> 1 ⋮ d => d = + 1

Vì ƯCLN ( n + 1 ; 2n + 3 ) = 1 nên p/s đã cho là p/s tối giản

Câu 2 làm tương tự

18 tháng 3 2021

a) Vì n\(\inℕ\)nên n + 1 \(\inℕ\)và 2n + 3\(\inℕ\).

Gọi d \(\in\)ƯCLN ( n + 1 , 2n + 3 )

\(\Rightarrow n+1⋮d\)và \(2n+3⋮d\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\in\left\{1;-1\right\}\)

\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản .

                           Vậy \(\frac{n+1}{2n+3}\)tối giản \(\forall n\inℕ\).

18 tháng 3 2021

b) TƯƠNG TỰ CÂU (a)

20 tháng 2 2020

\(\frac{n+1}{2n+3}\)\(\frac{2\left(n+1\right)}{2n+3}\)\(\frac{2n+2}{2n+3}\)\(\frac{2n+3-1}{2n+3}\)=\(-\frac{1}{2n+3}\)

=> 2n+3 thuộc Ư(-1) ={ 1; -1}

Vậy...

Ko chắc nha

2 tháng 6 2018

Gợi Ư CLN\(\left(2n+3;4n+8\right)=d\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\Rightarrow2.\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow d=1;2\)

\(+d=2\Rightarrow2n+3⋮2\)

Mak 2n+3 ko chia hết cho 2

\(\Rightarrow d\ne2\)

\(\Rightarrow d=1\)

\(\Rightarrowđpcm\)