Tìm giá trị nhỏ nhất của biểu thức A = x2 - 7x + 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) \(A=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\)≥0 ∀x
⇒\(A\)≥2 ∀x
Min A=2⇔\(x=3\)
+) \(B=11-x^2\)
Câu này chỉ tìm được max thôi nha
1: Ta có: \(x^2-2x-5\)
\(=x^2-2x+1-6\)
\(=\left(x-1\right)^2-6\ge-6\forall x\)
Dấu '=' xảy ra khi x=1
2: ta có: \(3x^2+5x-2\)
\(=3\left(x^2+\dfrac{5}{3}x-\dfrac{2}{3}\right)\)
\(=3\left(x^2+2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{49}{36}\right)\)
\(=3\left(x+\dfrac{5}{6}\right)^2-\dfrac{49}{12}\ge-\dfrac{49}{12}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{5}{6}\)
Ta có: A = x 2 - 6 x + 11 = x 2 - 2 . 3 x + 9 + 2 = x - 3 2 + 2
Vì x - 3 2 ≥ 0 nên x - 3 2 + 2 ≥ 2
Suy ra: A ≥ 2.
A = 2 khi và chỉ khi x - 3 = 0 suy ra x = 3
Vậy A = 2 là giá trị nhỏ nhất của biểu thức tại x =3.
Ta có: x^2-7x+11
=x^2-7x+12,25-1,25
=x^2-2.3,5x+3,5^2-1,25
=(x-3,5)^5-1,25
Ma: (x-3,5)^2\(\ge\)0
\(\Rightarrow\)(x-3,5)^2-1,25 \(\ge\)-1,25
Vậy Min của A là: -1,25
Dấu "=" xảy ra khi: x-3,5=0 \(\Rightarrow\) x=3,5
<=> A = x2 - 7x + (3,5)2 - 1,25
<=> A = (x - 3,5)2 - 1,25
Do: (x - 3,5)2 \(\ge\)0 <=> A \(\ge\)-1,25
Dấu "=" xảy ra khi và chỉ khi: (x - 3,5)2 = 0 <=> x = 3,5
Vậy MinA = -1,25 khi và chỉ khi x = 3,5
`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`
\(\Delta=4m^2+69\ge0\Leftrightarrow\begin{matrix}m\ge\dfrac{\sqrt{69}}{2}\\m\le-\dfrac{\sqrt{69}}{2}\end{matrix}\)
viet : \(\left\{{}\begin{matrix}x_1+x_2=7\\x_1x_2=-\left(m^2+5\right)\end{matrix}\right.\)
ta có : \(A=\left(x_1+x_2\right)^2-x_1x_2+2m=49+m^2+5+2m=m^2+2m+54\)
vì \(m\ge\dfrac{\sqrt{69}}{2}\Rightarrow m^2+2m+54\ge\dfrac{69+2\sqrt{69}+216}{4}\) hay \(A\ge\dfrac{69+2\sqrt{69}+216}{4}\)
\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)
b:
\(D=-25x^2+10x-1-10\)
\(=-\left(25x^2-10x+1\right)-10\)
\(=-\left(5x-1\right)^2-10< =-10\)
Dấu = xảy ra khi x=1/5
\(E=-9x^2-6x-1+20\)
\(=-\left(9x^2+6x+1\right)+20\)
\(=-\left(3x+1\right)^2+20< =20\)
Dấu = xảy ra khi x=-1/3
\(F=-x^2+2x-1+1\)
\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)
Dấu = xảy ra khi x=1
A = x2 - 7x + 11
<=> A = x2 - 7x + (3,5)2 - 1,25
<=> A = (x - 3,5)2 - 1,25
Do: (x - 3,5)2 lớn hơn hoặc = 0
=> A lớn hơn hoặc bằng -1,25
Dấu "=" xảy ra khi: (x - 3,5)2 = 0 <=> x = 3,5
Vậy x = 3,5