K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: BC vuông góc AB

BC vuông góc SA

=>BC vuông góc (SAB)

BD vuông góc CA

BD vuông góc SA

=>BD vuông góc (SAC)

2: DC vuông góc AD

DC vuông góc SA
=>DC vuông góc (SAD)

=>(SCD) vuông góc (SAD)

4: (SC;(SAB))=(SC;SB)=góc CSB

\(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(SC=\sqrt{AC^2+SA^2}=a\sqrt{5}\)

\(SB=\sqrt{SA^2+AB^2}=2a\)

BC=a

Vì SB^2+BC^2=SC^2

nên ΔSCB vuông tại B

sin CSB=BC/SC=1/căn 5

=>góc CSB=27 độ

3: BC vuông góc SAB

=>AE vuông góc BC

mà AE vuông góc SB

nên AE vuông góc (SBC)

=>AE vuông góc SC

4: (SB;(SAC))=(SB;SD)=góc DSB

\(SD=\sqrt{SA^2+AD^2}=2a;SB=2a;DB=a\sqrt{2}\)

\(cosDSB=\dfrac{4a^2+4a^2-2a^2}{2\cdot2a\cdot2a}=\dfrac{3}{4}\)

=>góc DSB=41 độ

1: BC vuông góc AB

BC vuông góc SA

=>BC vuông góc (SAB)

BD vuông góc CA

BD vuông góc SA

=>BD vuông góc (SAC)

2: DC vuông góc AD

DC vuông góc SA
=>DC vuông góc (SAD)

=>(SCD) vuông góc (SAD)

4: (SC;(SAB))=(SC;SB)=góc CSB

\(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(SC=\sqrt{AC^2+SA^2}=a\sqrt{5}\)

\(SB=\sqrt{SA^2+AB^2}=2a\)

BC=a

Vì SB^2+BC^2=SC^2

nên ΔSCB vuông tại B

sin CSB=BC/SC=1/căn 5

=>góc CSB=27 độ

a: BC vuông góc AB; BC vuông góc SA

=>BC vuông góc (SAB)

b: (BS;(BACD))=(BS;BA)=góc SBA

tan SBA=SA/AB=căn 5/2

=>góc SBA=48 độ

(SC;(ABCD))=(CS;CA)=góc SCA

tan SCA=SA/AC=1

=>góc SCA=45 độ

a: ta có: BC\(\perp\)AB(ABCD là hình vuông)

BC\(\perp\)SA(SA\(\perp\)(ABCD))

AB,SA cùng thuộc mp(SAB)

Do đó: BC\(\perp\)(SAB)

b: Ta có: BD\(\perp\)AC(ABCD là hình vuông)

BD\(\perp\)SA(SA\(\perp\)(ABCD))

AC,SA cùng thuộc mp(SAC)

Do đó: BD\(\perp\)(SAC)

c: Ta có: BC\(\perp\)(SAB)

AH\(\subset\)(SAB)

Do đó: BC\(\perp\)AH

Ta có: AH\(\perp\)SB

AH\(\perp\)BC

SB,BC cùng thuộc mp(SBC)

Do đó: AH\(\perp\)(SBC)

d: Ta có: AH\(\perp\)(SBC)

SC\(\subset\)(SBC)

Do đó: AH\(\perp\)SC

Ta có: CD\(\perp\)SA(SA\(\perp\)(ABCD))

CD\(\perp\)AD(ABCD là hình vuông)

SA,AD cùng thuộc mp(SAD)

Do đó: CD\(\perp\)(SAD)

=>AK\(\perp\)CD

mà AK\(\perp\)SD

và CD,SD cùng thuộc mp(SCD)

nên AK\(\perp\)(SCD)

=>AK\(\perp\)SC

Ta có: SC\(\perp\)AK

SC\(\perp\)AH

AK,AH cùng thuộc mp(AKH)

Do đó: SC\(\perp\)(AKH)