tìm x sao cho , giá trị của biểu thức 3x + 2 là số không âm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x-5 không âm <=>2x-5\(\ge0\)
\(\Leftrightarrow x\ge\frac{5}{2}\)
b)\(-3x\le-7x+5\)
\(\Leftrightarrow4x\le5\Leftrightarrow x\le\frac{5}{4}\)
a: Để \(\dfrac{3x-2}{4}\) không nhỏ hơn \(\dfrac{3x+3}{6}\) thì \(\dfrac{3x-2}{4}>=\dfrac{3x+3}{6}\)
=>\(\dfrac{6\left(3x-2\right)}{24}>=\dfrac{4\left(3x+3\right)}{24}\)
=>18x-12>=12x+12
=>6x>=24
=>x>=4
b: Để \(\left(x+1\right)^2\) nhỏ hơn \(\left(x-1\right)^2\) thì \(\left(x+1\right)^2< \left(x-1\right)^2\)
=>\(x^2+2x+1< x^2-2x+1\)
=>4x<0
=>x<0
c: Để \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\) thì
\(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}< =\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)
=>\(\dfrac{2x-3+5x\left(x-2\right)}{35}< =\dfrac{5x^2-7\cdot\left(2x-3\right)}{35}\)
=>\(2x-3+5x^2-10x< =5x^2-14x+21\)
=>-8x-3<=-14x+21
=>6x<=24
=>x<=4
a x lớn hơn hoặc bằng 5/2
b, x nhỏ hơn hoặc bằng 5/4
ko bt đúng ko nha bn
Answer:
a) \(\frac{5x}{2x+2}+1=\frac{6}{x+1}\)
\(\Rightarrow\frac{5x}{2\left(x+1\right)}+\frac{2\left(x+1\right)}{2\left(x+1\right)}=\frac{12}{2\left(x+1\right)}\)
\(\Rightarrow5x+2x+2-12=0\)
\(\Rightarrow7x-10=0\)
\(\Rightarrow x=\frac{10}{7}\)
b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\left(ĐK:x\ne0\right)\)
\(\Rightarrow x^2-6=x^2+\frac{3}{2}x\)
\(\Rightarrow\frac{3}{2}x=-6\)
\(\Rightarrow x=-4\)
c) \(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\ge0\)
\(\Rightarrow9x-6-6x-6\ge0\)
\(\Rightarrow3x-12\ge0\)
\(\Rightarrow x\ge4\)
d) \(\left(x+1\right)^2< \left(x-1\right)^2\)
\(\Rightarrow x^2+2x+1< x^2-2x+1\)
\(\Rightarrow4x< 0\)
\(\Rightarrow x< 0\)
e) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Rightarrow\frac{2x-3+5\left(x^2-2x\right)}{35}\le\frac{5x^2-7\left(2x-3\right)}{35}\)
\(\Rightarrow2x-3+5x^2-10x\le5x^2-14x+21\)
\(\Rightarrow6x\le24\)
\(\Rightarrow x\le4\)
f) \(\frac{3x-2}{4}\le\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\le0\)
\(\Rightarrow9x-6-6x-6\le0\)
\(\Rightarrow3x\le12\)
\(\Rightarrow x\le4\)
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)
Đề bài là thế này đúng không bạn:
Cho các số thực không âm x; y thỏa mãn: \(x^2+y^2\le2\)
Tìm GTLN của: \(P=\sqrt{29x+3y}+\sqrt{3x+29y}\)
P/s: bạn nên sử dụng tính năng gõ công thức để người khác dễ đọc hơn (đây là tính năng rất đơn giản, dễ dàng làm quen, nó nằm ở biểu tượng \(\sum\) trên khung soạn thảo)
a) Giá trị của biểu thức không âm khi :
\(2x-5\ge0\Leftrightarrow2x\ge5\)
\(\Leftrightarrow\) \(x\ge\dfrac{5}{2}\)
Vậy để 2x-5 không âm khi \(x\ge\dfrac{5}{2}\)
b) Giá trị của biểu thức -3xkhông lớn hơn giá trị của biểu thức -7x + 5 khi: \(-3x\le-7x+5\)
\(\Leftrightarrow\) \(-3x+7x\le5\Leftrightarrow4x\le5\Leftrightarrow x\le\dfrac{5}{4}\)
Vậy để giá trị của -3x không lớn hơn giá trị của -7x+5 thì \(x\le\dfrac{5}{4}\)
a)Ta có bất phương trình: 2x – 5 ≥ 0 ⇔ 2x > 5
⇔
Vậy để cho 2x – 5 không âm thì .
b)Tìm x sao cho giá trị của biểu thức -3x không lớn hơn giá trị của biểu thức -7x + 5.
Ta có : -3x ≤ -7x + 5 ⇔-3x + 7x ≤ 5
⇔2x ≤ 5
⇔x ≤
Vậy để cho giá trị của -3x không lớn hơn giá trị của -7x + 5 thì .
a) Ta có 5x - 7 không âm
=> 5x - 7 > hoặc = 0
<=> 5x > hoặc = 7
<=> x > hoặc = 7/5
b) Ta có 4x > hoặc = 2x + 9
<=> 2x > hoặc = 9
<=> x > hoặc = 4,5
( xin lỗi nha, hôm nay máy mình bị hâm nên viết có hơi khó hiểu, cậy tự dịch nhé)
a/ 5x - 7 > 0
5x > 7
x > 7/5 \(\frac{5}{7}\)
b/ 4x > 2x + 9
2x > 9
x > 9/2
Để \(3x+2\)không âm
\(\Rightarrow3x+2\ge0\)
\(\Rightarrow3x\ge-2\)
\(\Rightarrow x\ge\frac{-2}{3}\)
Vầy với \(x\ge\frac{-2}{3}\)thì biểu thức trên không âm
để 3x+2 không âm thì x không âm => x thuộc N*