Cho a,b,c>0. C/m: \(a+b\ge\sqrt[3]{ab^2}+\sqrt[3]{a^2b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Bunhia:
\(\left(1+2\right)\left(b^2+2a^2\right)\ge\left(1.b+\sqrt{2}.\sqrt{2}a\right)^2=\left(b+2a\right)^2\)
b)\(ab+bc+ca=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng bđt câu a
=>VT\(\ge\)\(\dfrac{b+2a}{\sqrt{3}ab}+\dfrac{c+2b}{\sqrt{3}bc}+\dfrac{a+2c}{\sqrt{3}ca}\)
\(\Leftrightarrow VT\ge\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{1}{c}+\dfrac{2}{a}=3=VP\)
Tự tìm dấu "="
Nguyễn Việt LâmMashiro ShiinaBNguyễn Thanh HằngonkingCẩm MịcFa CTRẦN MINH HOÀNGhâu DehQuân Tạ MinhTrương Thị Hải Anh
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\ge4\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge2\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z\ge1\)
\(P=\sqrt{x^2+2y^2}+\sqrt{y^2+2z^2}+\sqrt{z^2+2x^2}\)
\(\Rightarrow P\ge\sqrt{\frac{\left(x+2y\right)^2}{3}}+\sqrt{\frac{\left(y+2z\right)^2}{3}}+\sqrt{\frac{\left(z+2x\right)^2}{3}}\)
\(\Rightarrow P\ge\frac{1}{\sqrt{3}}\left(3x+3y+3z\right)\ge\frac{3}{\sqrt{3}}=\sqrt{3}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=3\)
3.
\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)
\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)
Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)
\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)
\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)
Đặt \(\left(\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c}\right)=\left(x,y,z\right)\) với x, y, z > 0 thì ta có \(x+y+z=1\).
Đặt biểu thức ở VT là A. Ta có:
\(A=\sqrt{\dfrac{b^2+2a^2}{a^2b^2}}+\sqrt{\dfrac{c^2+2b^2}{b^2c^2}}+\sqrt{\dfrac{a^2+2c^2}{c^2a^2}}=\sqrt{x^2+2y^2}+\sqrt{y^2+2z^2}+\sqrt{z^2+2x^2}\).
Ta có bất đẳng thức \(\sqrt{a_1^2+a_2^2}+\sqrt{a_3^2+a_4^2}\ge\sqrt{\left(a_1+a_3\right)^2+\left(a_2+a_4\right)^2}\).
Đây là bđt Mincopxki cho hai bộ số thực và dễ dàng cm bằng biến đổi tương đương.
Do đó \(A\ge\sqrt{\left(x+y\right)^2+\left(\sqrt{2}y+\sqrt{2}z\right)^2}+\sqrt{z^2+2x^2}\ge\sqrt{\left(x+y+z\right)^2+\left(\sqrt{2}y+\sqrt{2}z+\sqrt{2}x\right)^2}=\sqrt{1+2}=\sqrt{3}=VP\).
Đẳng thức xảy ra khi a = b = c = 3.
Vậy...
Tương tự: \(GT\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
\(VT=\dfrac{\sqrt{a^2+a^2+b^2}}{ab}+\dfrac{\sqrt{b^2+b^2+c^2}}{bc}+\dfrac{\sqrt{c^2+a^2+a^2}}{ca}\)
\(VT\ge\dfrac{\sqrt{\dfrac{1}{3}\left(a+a+b\right)^2}}{ab}+\dfrac{\sqrt{\dfrac{1}{3}\left(b+b+c\right)^2}}{bc}+\dfrac{\sqrt{\dfrac{1}{3}\left(c+c+a\right)^2}}{ca}\)
\(VT\ge\sqrt{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=3\)
\(\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ca}\ge\sqrt{3}\left(1\right)\)
Ta có ab+bc+ca=abc nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
\(\left(1\right)\Leftrightarrow\sqrt{\frac{1}{a^2}+\frac{2}{b^2}}+\sqrt{\frac{1}{b^2}+\frac{2}{c^2}}+\sqrt{\frac{1}{c^2}+\frac{2}{a^2}}\ge\sqrt{3}\)
Trong mặt phẳng với hệ tọa độ Oxy, với các Vecto
\(\overrightarrow{u}=\left(\frac{1}{a};\frac{\sqrt{2}}{b}\right);\left|\overrightarrow{u}\right|=\sqrt{\frac{1}{a^2}+\frac{2}{b^2}}\)
\(\overrightarrow{v}=\left(\frac{1}{b};\frac{\sqrt{2}}{c}\right)\Rightarrow\left|\overrightarrow{v}\right|=\sqrt{\frac{1}{b^2}+\frac{2}{c^2}}\)
\(\overrightarrow{w}=\left(\frac{1}{c};\frac{\sqrt{2}}{a}\right)\Rightarrow\left|\overrightarrow{w}\right|=\sqrt{\frac{1}{c^2}+\frac{2}{a^2}}\)
Ta có \(\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c};2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right)=\left(1;\sqrt{2}\right)\)
=> \(\left|\overrightarrow{u}\right|+\left|\overrightarrow{v}\right|+\left|\overrightarrow{w}\right|=\sqrt{1+2}=\sqrt{3}\)
Mặt khác \(\left|\overrightarrow{u}\right|+\left|\overrightarrow{v}\right|+\left|\overrightarrow{w}\right|\ge\left|\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}\right|\)
\(\Rightarrow\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ac}\ge\sqrt{3}\)
Dấu "=" xảy ra <=> a=b=c
Bạn tham khảo:
Câu hỏi của Phạm Vũ Trí Dũng - Toán lớp 8 | Học trực tuyến
Sai đề ở vế phải. Cái này tôi làm rồi nên biết: 819598 (học 24)
BDT cần cm tương đương
\(\frac{\left(2+6a+3b+6\sqrt{2bc}\right)\left(\sqrt{2b^2+2\left(a+c\right)^2}+3\right)}{2a+b+2\sqrt{2bc}}\ge16\)
Áp dụng bdt C-S và AM-GM:
\(VT=\frac{\left(2+6a+3b+6\sqrt{2bc}\right)\left(\sqrt{2b^2+2\left(a+c\right)^2}+3\right)}{2a+b+2\sqrt{2bc}}\)
\(=\left(\frac{2}{2a+b+2\sqrt{2bc}}+3\right)\left(\sqrt{2\left(b^2+\left(a+c\right)^2\right)}+3\right)\)
\(\ge\left(\sqrt{2\cdot\frac{\left(a+b+c\right)^2}{2}}+3\right)\left(\frac{2}{2a+b+b+2c}+3\right)\)
\(=\left(a+b+c+3\right)\left(\frac{1}{a+b+c}+3\right)\)
\(\ge\left(3+1\right)^2=16=VP\)
dau '=' khi a+b+c=1, b=a+c, 2c=b bn tự giải not
Chuyên toán Vĩnh Phúc đây mà :) Em chụp lại nha,chớ e mà viết ra nhiều người nhảy vào cà khịa ghê lắm:(