cho tam giác abc cân tại a h là trung điểm của bc. kẻ hm vuông góc ab ( m thuộc ab), hn vuông góc với ac (n thuộc ac)
a, chứng minh tam giác ahb = tam giác ahc
b, chứng minh tam giác hmn cân
c, chứng minh mn//bc
d, gọi e là giao điểm của ab và hn, f là giao điểm của ac và hm, i là giao điểm của ah và ef, chứng minh điểm h cách đều 3 cạnh tam giác mni
a: Xet ΔAHB và ΔAHC có
AB=AC
AH chung
HB=HC
=>ΔAHB=ΔAHC
b: Xet ΔAMH vuông tại M và ΔANH vuông tại N co
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN và HM=HN
=>ΔHMN cân tại H
c: Xét ΔABC có AM/AB=AN/AC
nên MN//CB