\(\dfrac{2x-6}{x+1}>=0\)
cứu mik vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT $\Leftrightarrow (\frac{x+1}{2022}+1)+(\frac{x+2}{2021}+1)+...+(\frac{x+23}{2000}+1)=0$
$\Leftrightarrow \frac{x+2023}{2022}+\frac{x+2023}{2021}+...+\frac{x+2023}{2000}=0$
$\Leftrightarrow (x+2023)(\frac{1}{2022}+\frac{1}{2021}+...+\frac{1}{2000})=0$
Dễ thấy tổng trong () luôn dương
$\Rightarrow x+2023=0$
$\Leftrightarrow x=-2023$
Lời giải:
$\frac{x^3+8}{x^2-2x+1}.\frac{x^2+3x+2}{1-x^2}=\frac{(x^3+8)(x^2+3x+2)}{(x^2-2x+1)(1-x^2)}$
$=\frac{(x+2)(x^2-2x+4)(x+1)(x+2)}{(x-1)^2(1-x)(x+1)}$
$=\frac{(x+2)^2(x^2-2x+4)}{-(x-1)^3}$
Để D là số nguyên thì \(2x+4⋮3x-1\)
=>\(6x+12⋮3x-1\)
=>\(6x-2+14⋮3x-1\)
=>\(14⋮3x-1\)
=>\(3x-1\in\left\{1;-1;2;-2;7;-7;14;-14\right\}\)
=>\(3x\in\left\{2;0;3;-1;8;-6;15;-13\right\}\)
=>\(x\in\left\{\dfrac{2}{3};0;1;-\dfrac{1}{3};\dfrac{8}{3};-2;5;-\dfrac{13}{3}\right\}\)
mà x nguyên
nên \(x\in\left\{0;1;-2;5\right\}\)
\(D=\dfrac{2x+4}{3x-1}\\ =>3D=\dfrac{6x+12}{3x-1}=\dfrac{2\left(3x-1\right)+14}{3x-1}=2+\dfrac{14}{3x-1}\)
Để 3D nguyên thì : \(\dfrac{14}{3x-1}\in Z\)
\(=>14⋮\left(3x-1\right)\\ =>3x-1\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
\(=>3x\in\left\{2;0;3;-1;8;-6;15;-13\right\}\\ =>x\in\left\{\dfrac{2}{3};0;1;-\dfrac{1}{3};\dfrac{8}{3};-2;5;-\dfrac{13}{3}\right\}\)
Mà x nguyên \(=>x\in\left\{0;1;-2;5\right\}\)
Do những giá trị trên chỉ là 3D nguyên nên chưa chắc D đã nguyên
Vậy thử lại thay từng giá trị x vào bt D
Kết luận : \(x\in\left\{0;1;-2;5\right\}\)
`(2/3 x +1/2) (-2x+3)=0`
\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}x+\dfrac{1}{2}=0\\-2x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}x=-\dfrac{1}{2}\\-2x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}.\dfrac{3}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\)
\(\left(\dfrac{2}{3}x+\dfrac{1}{2}\right)\cdot\left(-2x+3\right)=0\\ =>\left[{}\begin{matrix}\dfrac{2}{3}x+\dfrac{1}{2}=0\\-2x+3=0\end{matrix}\right.\\ =>\left[{}\begin{matrix}\dfrac{2}{3}x=-\dfrac{1}{2}\\-2x=-3\end{matrix}\right.\\ =>\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Dấu ngoặc và cuối là sai nhé bạn. Phải là ngoặc vuông (x=0 hoặc x=-8) mới đúng, vì x không thể nhận 2 giá trị khác nhau cùng lúc.
=>8(x+1/x)^2+4[(x+1/x)^2-2]^2-4[(x+1/x)^2-2](x+1/x)^2=(x+4)^2
Đặt x+1/x=a(a>=2)
=>8a^2+4[a^2-2]^2-4[a^2-2]*a^2=(x+4)^2
=>8a^2+4a^4-16a^2+16-4a^4+8a^2=(x+4)^2
=>(x+4)^2=16
=>x+4=4 hoặc x+4=-4
=>x=-8;x=0
Ta có: \(\sqrt{2x+7}-6=x\)
\(\Leftrightarrow\sqrt{2x+7}=x+6\)
\(\Leftrightarrow x^2+12x+36-2x-7=0\)
\(\Leftrightarrow x^2+10x+29=0\)(Vô lý)
Vậy: \(S=\varnothing\)
\(\dfrac{2x-6}{x+1}\ge0\)
`<=> 2x-6 >= 0`
`<=> 2x >=6`
`<=> x>=3`
Vật bpt đã cho có tập nghiệm \(S=\left\{x|x\ge3\right\}\)
=>2x-6>=0 hoặc x+1<0
=>x>=3 hoặc x<-1