Cho tích a.b.c=1 và a+b+c > 1/a + 1/b +1/c
chứng minh rằng : (a-1)(b-1)(c-1) > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\) là ( 1)
Ta có : \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)
\(=\left(ab-a-b+1\right)\left(c-1\right)>0\)
\(=a+b+c-ab-bc-ca>0\)
\(=a+b+c-\dfrac{c}{ab}-\dfrac{a}{bc}-\dfrac{b}{ac}>0\)
\(\Leftrightarrow a+b+c>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( 2 )
BĐT ( 2 ) đúng . Từ đây ta có thể thấy BĐt ( 1 ) cũng đúng :D
Ta có: \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)
\(=\left(ab-a-b+1\right)\left(c-1\right)>0\)
\(=a+b+c-ab-bc-ca>0\)
\(=a+b+c-\frac{c}{ab}-\frac{a}{bc}-\frac{b}{ac}>0\)
\(\Leftrightarrow a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (Đúng)
Vậy \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\) (Đpcm)
Từ (a-1)(b-1)(c-1)>0 (*)
<=>(ab-b-a+1)(c-1)>0
<=> abc-ab-bc+b-ac+a+c-1>0
<=> a+b+c-ab-ac-bc>0
<=> a+b+c-\(\dfrac{abc}{c}-\dfrac{abc}{b}-\dfrac{abc}{a}\)>0
<=> a+b+c - \(\dfrac{1}{c}-\dfrac{1}{b}-\dfrac{1}{a}>0\)
<=> \(a+b+c>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( 1)
(1) đúng => (*) đúng
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) = \(\overline{\frac{\overline{bc}+\overline{ac}+\overline{ac}}{\overline{abc}}}\) = ab + bc + ca
=> a + b + c = ab + bc + ca
=> a + b + c - ab - bc - ca = 0
=> a + b + c - ab - bc - ac + abc - 1 = 0
=> (a - ab) + (b - 1) + (c - bc) + (abc - ac) = 0
=> - a(b - 1) + (b - 1) - c(b - 1) + ac(b - 1) = 0
=> (b - 1)(- a + 1 - c + ac) = 0
=> (b - 1)[( - a + 1) + (ac - c)] = 0
=> (b - 1)[ - (a - 1) + c(a - 1)] = 0
=> (a - 1)(b - 1)(c - 1) = 0
=> a - 1 = 0 hoặc b - 1 = 0 hoặc c - 1 = 0
=> a = 1 hoặc b = 1 hoặc c = 1
Vậy (a - 1)(b - 1)(c - 1) > 1
\(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)
\(\Leftrightarrow\left(ab-a-b+1\right)\left(c-1\right)>0\)
\(\Leftrightarrow abc-ac-bc+c-ab+a+b-1>0\)
\(\Leftrightarrow-ab-bc-ab+a+b+c>0\)
\(\Leftrightarrow a+b+c>ab+ac+bc\)
\(\Leftrightarrow a+b+c>\frac{abc}{a}+\frac{abc}{b}+\frac{abc}{c}\)
\(\Leftrightarrow a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (thỏa mãn đề bài)
Vậy \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)
\(a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow a+b+c>\frac{bc+ac+ab}{abc}\)
\(\Leftrightarrow a+b+c>bc+ac+ab\)
\(\Leftrightarrow a+b+c-bc-ac-ab>0\)
\(\Leftrightarrow abc+a+b+c-bc-ac-ab-abc>0\)
\(\Leftrightarrow abc+a+b+c-bc-ac-ab-1>0\)
\(\Leftrightarrow ab\left(c-1\right)-a\left(c-1\right)-b\left(c-1\right)+\left(c-1\right)>0\)
\(\Leftrightarrow\left(ab-a-b+1\right)\left(c-1\right)>0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\) (đpcm)