Tính :1/1.2+1/2.3+...+1/39.40+2/40.42+2/42.44+...+2/68.70+3/70.73+3/73.76+...+3/99.100
Các bạn giúp mình với mai mình kiểm tra rồi
Bạn nào gửi câu trả lời nhanh nhất , mình sẽ tick cho.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A\(=\frac{-3}{2}\cdot\frac{-4}{3}\cdot\frac{-5}{4}\cdot...\cdot\frac{-201}{200}\)
\(=\left(-1\right)\cdot\frac{3}{2}\cdot\left(-1\right)\cdot\frac{4}{3}\cdot\left(-1\right)\cdot\frac{5}{4}\cdot...\cdot\left(-1\right)\cdot\frac{201}{200}\)
\(=\left[\left(-1\right)\cdot\left(-1\right)\cdot\left(-1\right)\cdot...\cdot\left(-1\right)\right]\cdot\left(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{201}{200}\right)\)(Có 199 thừa số -1)
\(=\left(-1\right)\cdot\left(\frac{3\cdot4\cdot5\cdot...\cdot201}{2\cdot3\cdot4\cdot...\cdot200}\right)\)
\(=\left(-1\right)\cdot\frac{201}{2}\)
\(=-\frac{201}{2}\)
\(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}\)
Ta thấy các phân số \(\frac{1}{101};\frac{1}{102};\frac{1}{103};...;\frac{1}{198};\frac{1}{199}\)đều lớn hơn \(\frac{1}{200}\)
\(\Rightarrow A>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+..+\frac{1}{200}+\frac{1}{200}\)(có 100 số hạng \(\frac{1}{200}\))
\(\Leftrightarrow A>\frac{100}{200}\)
\(\Leftrightarrow A>\frac{1}{2}\)
\(A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{100}\right)=2.\frac{49}{100}=\frac{49}{50}\)
Ta có :
\(\frac{1}{101}>\frac{1}{200}\)
\(\frac{1}{102}>\frac{1}{200}\)
\(\frac{1}{103}>\frac{1}{200}\)
\(.........\)
\(\frac{1}{200}=\frac{1}{200}\)
Cộng vế với vế ta được :
\(\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}\) (có 100 số hạng \(\frac{1}{200}\))\(=\frac{100}{200}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}>\frac{1}{2}\)