Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
20 . 2^x + 1 = 10.4^2 + 1
20 . 2^x + 1 = 10 . 16 + 1
20 . 2^x + 1 = 161
20 . 2^x = 161 - 1
20 . 2^x = 160
2^x = 8
2^x = 2^3
=> x = 3
x^2 +1 =0 hoac x^2 -4 =0
x^2 = -1 (vo ly) hoac X^2 =4
suy ra x=2 hoac x=-2
x2+1=0 hoặc x2-4=0
x2 =-1=> vô lí
x2-4=0=x^2=4=>x=2 hoặc x=-2
vậy x=2 hoặc -2
a)=>x-1;x-3 \(\in\)Ư(-5)={-1;-5;1;5}
còn lại thử từng TH nhé
b)\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
c)=>x2-4;x2-19 trái dấu
Ta có:x^2-4-(x^2-19)=x^2-4-x^2+19=15 >0
\(\Rightarrow\orbr{\begin{cases}x^2-4>0\\x^2-19< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x^2>4\\x^2< 19\end{cases}}\)
Ta có:4<x^2<19
=>x^2\(\in\){9;16}
=>x\(\in\){3;4}
\(\left(x+\frac{1}{2}\right).\left(x-\frac{3}{4}\right)=0\)
TH1:
\(x+\frac{1}{2}=0\)
=> x = \(\frac{-1}{2}\)
TH2:
\(x-\frac{3}{4}=0\)
=> x = \(\frac{3}{4}\)
\(\left(x-1\right)^2=\left(x-3\right)^4\)
\(\Leftrightarrow\left(x-1\right)^2-\left(x-3\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^2-\left[\left(x-3\right)^2\right]^2=0\)
\(\Leftrightarrow\left[\left(x-1\right)-\left(x-3\right)^2\right]\left[\left(x-1\right)+\left(x-3\right)^2\right]=0\)
\(\Leftrightarrow\left(x-1-x^2+6x-9\right)\left(x-1+x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(-x^2+7x-10\right)\left(x^2-5x+8\right)=0\)
\(\Leftrightarrow-\left(x-5\right)\left(x-2\right)\left(x^2-5x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy: ...
\(\dfrac{1}{4}-\left(2\cdot x\cdot\dfrac{1}{2}\right)^2=0\)
\(\left(2x\cdot\dfrac{1}{2}\right)^2=\dfrac{1}{4}-0\)
\(\left(2\cdot x\cdot\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
`->`\(\left(2\cdot x\cdot\dfrac{1}{2}\right)^2=\left(\pm\dfrac{1}{2}\right)^2\)
`->`\(\left[{}\begin{matrix}2\cdot x\cdot\dfrac{1}{2}=\dfrac{1}{2}\\2\cdot x\cdot\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\)
`->`\(\left[{}\begin{matrix}2x=\dfrac{1}{2}\div\dfrac{1}{2}\\2x=-\dfrac{1}{2}\div\dfrac{1}{2}\end{matrix}\right.\)
`->`\(\left[{}\begin{matrix}2x=1\\2x=-1\end{matrix}\right.\)
`->`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy, `x=1/2` hoặc `x=-1/2.`