Trong mặt phẳng Oxy cho tam giác ABC có A(1;1), B(-2;4) và C(8;2). Đường phân giác trong góc A cắt đường trung trực cạnh BC tại H. Tọa độ điểm H là?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B → = 3 ; 12 , A C → = 4 ; − 1 ⇒ ( A B ) ⃗ . ( A C ) ⃗ = 3 . 4 + 12 . ( - 1 ) = 0 ⇒ ∆ A B C vuông tại A. Trực tâm của tam giác là đỉnh A. Chọn B
\(\left\{{}\begin{matrix}\overrightarrow{BA}=\left(3;-1\right)\\\overrightarrow{BC}=\left(-4;-2\right)\end{matrix}\right.\)
\(\Rightarrow cos\widehat{ABC}=cos\left(\overrightarrow{BA};\overrightarrow{BC}\right)=\dfrac{3.\left(-4\right)+1.2}{\sqrt{3^2+1^2}.\sqrt{\left(-4\right)^2+\left(-2\right)^2}}=-\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow\widehat{ABC}=135^0\)
\(AB=\sqrt{\left(5-1\right)^2+\left(-3+1\right)^2}=2\sqrt{5}\)
\(AC=\sqrt{\left(0-1\right)^2+\left(1+1\right)^2}=\sqrt{5}\)
\(BC=\sqrt{\left(0-5\right)^2+\left(1+3\right)^2}=\sqrt{29}\)
=>C=3 căn 5+căn 29
Ta có B A → = 3 ; − 1 và B C → = − 4 ; − 2 . Suy ra:
cos B A → , B C → = B A → . B C → B A → . B C → = 3. − 4 + − 1 . − 2 9 + 1 . 16 + 4 = − 2 2 ⇒ B ^ = B A → , B C → = 135 O .
Chọn D.
Ta có A B → = 2 ; − 2 B C → = 2 ; 2 C A → = − 4 ; 0 ⇒ A B = 2 2 + − 2 2 = 2 2 B C = 2 2 + 2 2 = 2 2 C A = − 4 2 + 0 2 = 4
Vậy chu vi P của tam giác ABC là P =AB + BC + CA = 4 + 4 2
Chọn B.
\(AB=\sqrt{\left(0+1\right)^2+\left(2+3\right)^2}=\sqrt{26}\)
\(AC=\sqrt{\left(2+1\right)^2+\left(1+3\right)^2}=\sqrt{3^2+4^2}=5\)
\(BC=\sqrt{\left(2-0\right)^2+\left(1-2\right)^2}=\sqrt{5}\)
=>\(C=\sqrt{26}+5+\sqrt{5}\left(cm\right)\)
\(\overrightarrow{AB}=\left(1;-2\right)\Rightarrow AB=\sqrt{5}\)
\(\overrightarrow{AC}=\left(-2;2\right)\Rightarrow AC=2\sqrt{2}\)
\(BC=\left(-3;4\right)\Rightarrow BC=5\)
Chu vi tam giác ABC: \(AB+AC+BC=\sqrt{5}+2\sqrt{2}+5\)
Chọn A.
Gọi AH là đường cao của tam giác ABC ⇒ AH ⊥ BC.
B(4;5), C(-3;2)
Phương trình đường cao AH đi qua A(2;-1) nhận là VTPT là:
7.(x - 2) + 3.(y + 1) = 0 ⇔ 7x - 14 + 3y + 3 = 0 ⇔ 7x + 3y - 11 = 0
Vậy phương trình đường cao AH là 7x + 3y - 11 = 0.
vecto AB=(-3;3)=(-1;1)
=>VTPT là (1;1)
Phương trình AB là: 1(x-1)+1(y-1)=0
=>x+y-2=0
vecto AC=(7;1)
=>VTPT là (-1;7)
Phương trình AC là
-1(x-1)+7(y-1)=0
=>-x+1+7y-7=0
=>-x+7y-6=0
=>x-7y+6=0
AB: x+y-2=0
AC: x-7y+6=0
Phương trình phân giác góc ngoài và góc trong của góc A sẽ là:
\(\dfrac{x+y-2}{\sqrt{2}}=\pm\dfrac{x-7y+6}{5\sqrt{2}}\)
=>\(\dfrac{x+y-2}{1}=\pm\dfrac{x-7y+6}{5}\)
=>5(x+y-2)=x-7y+6 hoặc -5(x+y-2)=x-7y+6
=>5x+5y-10-x+7y-6=0 hoặc -5x-5y+10-x+7y-6=0
=>4x+12y-16=0 hoặc -6x+12y+4=0
=>x+3y-4=0(d1) hoặc 3x-6y-2=0(d2)
Thay tọa độ B,C vào (d1), ta được:
t1=(-2)+3*4-4=-6+12=6 và t2=8+3*2-4=8+2=10
Thay tọa độ B,C vào (d2), ta được:
t3=3*(-2)-6*4-2=-6-2-24=-32 và t4=3*8-6*2-2=24-2-12=10
Vì t3*t4<0
nên (d2) chính là đường phân giác góc trong
=>(d2): 3x-6y-2=0
Tọa độ M là trung điểm của BC là:
x=(-2+8)/2=6/2=3 và y=(4+2)/2=3
vecto BC=(10;-2)=(5;-1)
Phương trình trung trực của BC là:
5(x-3)+(-1)(y-3)=0
=>5x-15-y+3=0
=>5x-y-12=0
Tọa độ H là:
5x-y=12 và 3x-6y=2
=>x=70/27 và y=26/27