K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2023

\(x+\dfrac{1}{x-2}=\dfrac{x^2-2x+1}{x-2}=\dfrac{\left(x-1\right)^2}{x-2}\)

Để biểu thức trên không âm hay \(\dfrac{\left(x-1\right)^2}{x-2}\ge0\) thì:

\(\left[{}\begin{matrix}x-2>0\\\left(x-1\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>2\\x=1\end{matrix}\right.\)

16 tháng 3 2021

Cảm ơn bạn nhé 

9 tháng 3 2023

1) x(x - 1)(x² + 4) = 0

x = 0 hoặc x - 1 = 0

x = 0 hoặc x = 1

Vậy phương trình đã cho có 2 nghiệm

2) Do x² ≥ 0

⇒x² + 1 > 0

Để biểu thức đã cho nhận giá trị âm thì -x < 0

Hay x > 0

8 tháng 3 2023

A = 1/1 - 1/2 + 1/3 - 1/3 + 1/4

A = 1/1 - 1/4

A = 3/4

vậy A = 3/4

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}\)

\(=1-\dfrac{1}{4}=\dfrac{4-1}{4}=\dfrac{3}{4}\)

9 tháng 3 2023

Em nhập câu hỏi nhé!

30 tháng 4 2021

Để x2 - 8x + 12 không âm thì x2 - 8x + 12 ≥ 0

<=> ( x - 2 )( x - 6 ) ≥ 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}x-2\ge0\\x-6\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2\\x\ge6\end{cases}}\Leftrightarrow x\ge6\)

2. \(\hept{\begin{cases}x-2\le0\\x-6\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2\\x\le6\end{cases}}\Leftrightarrow x\le2\)

Vậy với \(\orbr{\begin{cases}x\ge6\\x\le2\end{cases}}\)thì x2 - 8x + 12 không âm 

30 tháng 4 2021

Theo bài ra ta có : \(x^2-8x+12\ge0\)

\(\Leftrightarrow\left(x-6\right)\left(x-2\right)\ge0\)

TH1 : \(\hept{\begin{cases}x-6\ge0\\x-2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\ge2\end{cases}\Leftrightarrow}x\ge6}\)

TH2 : \(\hept{\begin{cases}x-6\le0\\x-2\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\le2\end{cases}\Leftrightarrow x\le2}}\)

Vậy với giá trị \(x\le2;x\ge6\)thì biểu thức trên ko âm 

20 tháng 6 2021

a)

A=\(\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5x-5}\)

\(\Leftrightarrow\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5\left(x-1\right)}\)

ĐKXĐ: \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+1\\x=0-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

MTC: 5(x-1)(x+1)

\([\dfrac{5\left(x+1\right)\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}-\dfrac{5\left(x-1\right)\left(x-1\right)}{5\left(x-1\right)\left(x+1\right)}]\div\dfrac{2x\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow[5\left(x+1\right)\left(x+1\right)-5\left(x-1\right)\left(x-1\right)]\div2x\left(x+1\right)\)

\(\Leftrightarrow[5\left(x+1\right)^2-5\left(x-1\right)^2]\div2x^2+2x\)

\(\Leftrightarrow[5\left(x^2+2x+1\right)-5\left(x^2-2x+1\right)]\div2x^2+2x\)

\(\Leftrightarrow(5x^2+10x+5-5x^2+10x-5)\div2x^2+2x\)

\(\Leftrightarrow20x\div\left(2x^2+2x\right)\)

\(\Leftrightarrow10x+10\)

13 tháng 11 2021

\(ĐK:x\ne-1\\ \left|x\right|=2\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)

Với \(x=2\Leftrightarrow A=\dfrac{3}{2+1}=1\)

Với \(x=-2\Leftrightarrow A=\dfrac{3}{-2+1}=-3\)

12 tháng 11 2021

\(\Leftrightarrow\left[{}\begin{matrix}A=\dfrac{3}{2+1}=\dfrac{3}{3}=1\\A=\dfrac{3}{-2+1}=\dfrac{3}{-1}=-3\end{matrix}\right.\)