Cho tam giác ABC các đường cao AD và DE cắt nhau tại H CM
a, ADC đồng dạng BEC
b, AH.AD=AE.AC
c, AHB đồng dạng EHD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có CH vuông góc vs AB
DF vgoc vs AB
=>CH // DF
b) hai tam giác AHE và ACD đồng dạng (g.g)
=>AH/AC=AE/AD=>AH.AD=AE.AC
c) 2 tam giác AHE và BHD đồng dạng (g.g)=>AH/BH=HE/HD=> AH/HE=BH/HD
xét tam giác AHB và tam giácEHD có AH/HE=BH/HD
góc AHB= góc DHE
=> 2 tam giác này đồng dạng
a, Ta có H là giao điểm đường cao AD và BE
=>H là trực tâm tam giác ABC
=>CH là đường cao
=>CH vuông góc AB
Mà DF vuông góc AB
=>CH//DF
b, Tam giác AHE và tam giác ACD
góc CAD chung
góc AEB=góc ADC
Tam giác AHE và tam giác ACD (gg)
=>AH/AC=AE/AD
=>AH.AD=AE.AC
a: Xet ΔCEB vuông tại E và ΔCDA vuông tại D có
góc C chung
=>ΔCEB đồng dạng với ΔCDA
b: Xét ΔAEH vuông tại Evà ΔADC vuông tại D có
góc EAH chung
=>ΔAEH đồng dạng với ΔADC
=>AE/AD=AH/AC
=>AE*AC=AD*AH
c: Xét ΔHED và ΔHAB có
góc HED=góc HAB
góc EHD=góc AHB
=>ΔHED đồng dạng với ΔHAB