K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2016

a) \(A=\frac{6n+7}{2n+3}=\frac{6n+9}{2n+3}-\frac{2}{2n+3}\) nguyên

<=> 2n + 3 thuộc Ư(2) = {-2; -1; 1; 2}

<=> 2n thuộc {-5; -4; -2; -1}

Vì n nguyên nên n thuộc {-2; -1}

b) A có GTNN <=> \(\frac{2}{2n+3}\) có GTLN

<=> 2n + 3 là số nguyên dương nhỏ nhất 

<=>  2n + 3 = 1 

<=> 2n = -2

<=> n = -1

8 tháng 7 2016

a)\(A=\frac{6n+7}{2n+3}=\frac{2n+2n+2n+3+4}{2n+3}=\frac{4}{2n+3}\)

\(\Rightarrow2n+3\in\text{Ư}\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)

Nếu 2n+3 = 1 => n = -2 (nhận)

Nếu 2n+3 = 2 => n =-0,5 (loại)

Nếu 2n + 3 = 4 => n = 3,5 (loại)

Nếu 2n + 3 = -1 => n = 1 (nhận)

Nếu 2n + 3 = -2 => n = -2,5 (loại)

Nếu 2n + 3 = -4 => n =-3,5 (loại)

Vậy n \(\in\) {-2;1}

b) A GTNN => \(\frac{2}{2n+3}\) có GTLN

=> 2n + 3 là số nguyên dương nhỏ nhất

=> 2n + 3 = 1 

=> 2n = -2

=> n = -1

29 tháng 7 2020

Ta có :

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

a. Để A nguyên thì \(\frac{13}{2n+3}\in Z\)

\(\Rightarrow2n+3\in\left\{-13;-1;1;13\right\}\)

\(\Rightarrow2n\in\left\{-16;-4;-2;10\right\}\)

\(\Rightarrow n\in\left\{-8;-2;-1;5\right\}\)

b. Bổ sung điều kiện : A thuộc Z 

Để  \(A_{max}\) thì \(\frac{13}{2n+3}_{min}\)

\(\Leftrightarrow2n+3_{max}\in Z^-\)

Mà \(A\in Z\Leftrightarrow2n+3=-13\) hoặc \(2n+3=-1\)

\(\Rightarrow A_{max}=3-\frac{13}{-1}=16\Leftrightarrow n=-2\left(tm:n\in Z\right)\)

Vậy Amax = 16 <=> n = -2

29 tháng 6 2022

Bn ơi 

29 tháng 4 2020

ko bt nha ko tên

29 tháng 4 2020

@phan thi ly na bạn ko biết comment làm j dị

31 tháng 5 2018

Bài 1: 

a) ta có: \(A=\frac{2n-1}{n-3}=\frac{2n-6+5}{n-3}=\frac{2.\left(n-3\right)+5}{n-3}=\frac{2.\left(n-3\right)}{n-3}+\frac{5}{n-3}\)\(=2+\frac{5}{n-3}\)

Để A có giá trị nguyên

\(\Rightarrow\frac{5}{n-3}\in z\)

\(\Rightarrow5⋮n-3\Rightarrow n-3\inƯ_{\left(5\right)}=\left(5;-5;1;-1\right)\)

nếu n-3 = 5 => n = 8 (TM)

n-3 = -5 => n= -2 (TM)

n-3 = 1 => n = 4 (TM)

n-3 = -1 => n = 2 (TM)

KL: \(n\in\left(8;-2;4;2\right)\)

b) ta có: \(A=2+\frac{5}{n-3}\) ( pa)

Để A đạt giá trị lớn nhất

=>  \(\frac{5}{n-3}\le5\)

Dấu "=" xảy ra khi

\(\frac{5}{n-3}=5\)

\(\Rightarrow n-3=5:5\)

\(n-3=1\)

\(n=4\)

KL: n =4 để A đạt giá trị lớn nhất

Bài 2 bn làm tương tự nha!

19 tháng 7 2015

a, để B là số nguyên thì 6n+7 chia hết cho 2n+3

=> 6n+9-2 chia hết cho 2n+3

Vì 6n+9 chia hết cho 2n+3

=> 2 chia hết cho 2n+3

Mà 2n+3 lẻ

=> 2n+3 thuộc ước lẻ của 2

2n+3n
1-1
-1-2    

KL: n\(\in\){-1; -2}

2 tháng 7 2016

\(B=\frac{6n+7}{2n+3}=\frac{3\left(2n+3\right)-2}{2n+3}=\frac{3\left(2n+3\right)}{2n+3}-\frac{2}{2n+3}=3-\frac{2}{2n+3}\in Z\)

=>2 chia hết 2n+3 

=>2n+3 thuộc Ư(2)={1;-1;2;-2}

=>2n thuộc {-2;-4} (vì n nguyên)

=>n thuộc {-1;-2}

Để B đạt GTNN 

=>2n+3 đạt GTLN và 6n+7 đạt GTNN

Với n=-2 =>Bmin=\(\frac{6\cdot\left(-2\right)+7}{2\cdot\left(-1\right)+3}=\frac{-5}{-1}=5\)

  • n=-1 =>Bmin=\(\frac{6\cdot\left(-1\right)+7}{2\cdot\left(-1\right)+3}=\frac{1}{1}=1\)

Vì 5>1 =>Bmin=1 xảy ra khi n=-1

2 tháng 7 2016

a) \(B=\frac{6n+7}{2n+3}=\frac{6n+9-2}{2n+3}=\frac{3\left(2n+3\right)-2}{2n+3}=3-\frac{2}{2n+3}\)mà để \(B\in Z\)thì \(\frac{2}{2n+3}\in Z\)

=> 2n + 3 = -2;-1;1;2 => 2n = -5 ; -4 ; -2 ; -1 => n = -2 ; -1 vì nguyên

b)Xét \(B=3-\frac{2}{2n+3}\)vừa phân tích ở câu a , ta thấy B nhỏ nhất khi \(\frac{2}{2n+3}\) lớn nhất 

=> 2n + 3 dương , nhỏ nhất nên chỉ có thể bằng 1 => 2n = -2 => n = 1