So sánh 2 phân số sau:\(\frac{2014}{2015}.......\frac{2000}{2001}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2014}{2015}>\frac{2000}{2001}\)
mink chắc chắn và mink nhanh nhất, k mik nha
mỗi số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15
ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
hay tong tren be hon 15
2014+2015+2016/2015+2016+2017<2014/2015+2015/2016+2016/2017
\(2015^{2001}=2015^{2000}.2015;2014^{2000}+2014^{2001}=2014^{2000}.\left(2014+1\right)=2014.2015\)
Ta thấy 20152000.2015 > 20142000.2014
Đặt A= 2015^2013+1/2015^2014+7, B=2015^2014-2/2015^2015-2
2015A= 2015^2014+2015/2015^2014+7= 1 + (2008/2015^2014+7)
2015B= 2015^2015-4030/2015^2015-2= 1 - (4028/2015^2015-2)
Do 2015A>1>2015B nên A>B
Ta có \(A=2015^{2001}=2015.2015^{2000}\)
\(B=2014^{2000}+2014^{2001}=2014^{2000}.\left(1+2014\right)\)\(=2015.2014^{2000}\)
Ta thấy \(2014^{2000}< 2015^{2000}\Rightarrow2015.2014^{2000}< 2015.2015^{2000}\)
\(\Rightarrow2015^{2001}>2014^{2000}+2014^{2001}\)
Vậy A>B
Ta có công thức :
\(\frac{a}{b}>\frac{a+c}{b+c}\)\(\left(\frac{a}{b}>1;a,b,c\inℕ^∗\right)\)
\(A=\frac{99^{2015}+1}{99^{2014}+1}>\frac{99^{2015}+1+98}{99^{2014}+1+98}=\frac{99^{2015}+99}{99^{2014}+99}=\frac{99\left(99^{2014}+1\right)}{99\left(99^{2013}+1\right)}=\frac{99^{2014}+1}{99^{2013}+1}=B\)
\(\Rightarrow\)\(A>B\)
Chúc bạn học tốt ~
2014/2015 và 2015/2016
Ta có :
1 - 2014/2015 = 1/2015
1 - 2015/2016 = 1/2016
Vì 1/2015 > 1/2016 nên 2014/2015 < 2015/2016
2014/2015 và 2015/2016
Ta có: 2014/2015 - 1 =1/2015
2015/2016 -1 =1/2016
Vì 1/2015<1/2016
Vậy 2014/2015>2015/2016
Xét B=\(\frac{2001+2000}{2001+2002}\)
B=\(\frac{2001}{2001+2002}+\frac{2000}{2001+2002}\)
Ta thấy \(\frac{2001}{2002}>\frac{2001}{2001+2002}\)
\(\frac{2000}{2001}>\frac{2000}{2001+2002}\)
A>B.Vậy A>B
Nhớ k nha
Ta có: 2000/2001>1/2 ; 2001/2002>1/2
=>A=1/2+1/2=1=>A>1
B=2000+2001/2001+2002=4001/4003<1
A>1;B<1
=>A>B
Vậy A>B
phan so 2014/2015 lon hon nhe
k cho mình nhé hjhj
Có \(\frac{2014}{2015}\)=1 - \(\frac{1}{2015}\)và \(\frac{2000}{2001}\)= 1 - \(\frac{1}{2001}\)
Rồi tự so sánh 1 - \(\frac{1}{2015}\)và 1 - \(\frac{1}{2001}\)
Kết quả là \(\frac{2014}{2015}\)> \(\frac{2000}{2001}\)