Cho tam giác nhọn ABC nội tiếp đường tròn O. Gọi M N, lần lượt là trung điểm của các
cạnh BC và AC. Đường thẳng MN cắt cung nhỏ BC của đường tròn O tại P.
a) Chứng minh rằng tứ giác OMCN nội tiếp.
b) Gọi D là điểm bất kỳ trên AB D A D B , . Đường tròn ngoại tiếp tam giác BPD cắt cạnh BC tại điểm
I khác B K; là giao điểm của hai đường thẳng DI và AC. Chứng minh rằng PK PB PC PD .
c) Gọi G là giao điểm khác P của AP với đường tròn ngoại tiếp tam giác BPD, đường thẳng IG cắt AB tại
E. Chứng minh rằng D di chuyển trên cạnh AB thì tỉ số AD
AE không đổi.
a: ΔOBC cân tại O
mà OM là trung tuyến
nên OM vuông góc BC
ΔOAC cân tại O
mà ON là trung tuyến
nên ON vuông góc AC
Vì góc OMC+góc ONC=180 độ
nên OMCN nội tiếp