K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2023

\(2x^2-4x-m=0\left(1\right)\)

a, Để pt (1) có hai nghiệm phân biệt thì Δ' > 0

\(\Rightarrow2+2m>0\Leftrightarrow m>-1\)

b, Theo viét : \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)

Vì \(t_1,t_2\) là hai nghiệm của Phương trình \(x^2-Sx+P=0\) nên theo viét đảo có :

\(\left\{{}\begin{matrix}S=t_1+t_2=\dfrac{1}{x_1}+\dfrac{1}{x_2}\\P=t_1.t_2=\dfrac{1}{x_1x_2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}S=\dfrac{x_1+x_2}{x_1x_2}\\P=\dfrac{1}{x_1x_2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}S=\dfrac{2}{-\dfrac{m}{2}}\\P=\dfrac{1}{-\dfrac{m}{2}}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}S=-\dfrac{4}{m}\\P=-\dfrac{2}{m}\end{matrix}\right.\)

\(\Rightarrow\) Phương trình cần tìm là : \(x^2+\dfrac{4}{m}.x-\dfrac{2}{m}=0\) hay \(x^2m+4x-2=0\)

a: Khi m=1 thì (1): x^2-2(1-2)x+1^2-5-4=0

=>x^2+2x-8=0

=>(x+4)(x-2)=0

=>x=2 hoặc x=-4

b: Δ=(2m-4)^2-4(m^2-5m-4)

=4m^2-16m+16-4m^2+20m+16

=4m+32

Để pt có hai nghiệm phân biệt thì 4m+32>0

=>m>-8

x1^2+x2^2=-3x1x2-4

=>(x1+x2)^2+x1x2+4=0

=>(2m-4)^2+m^2-5m-4+4=0

=>4m^2-16m+16+m^2-5m=0

=>5m^2-21m+16=0

=>(m-1)(5m-16)=0

=>m=16/5 hoặc m=1

a: \(\text{Δ}=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)

để phương trình có hai nghiệm phân biệt thì m-2<>0

hay m<>2

Theo đề, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1-x_2=5\\x_1x_2=m-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x_1=m+5\\x_2=x_1-5\\x_1x_2=m-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+5}{2}\\x_2=\dfrac{m+5}{2}-5=\dfrac{m-5}{2}\\x_1x_2=m-1\end{matrix}\right.\)

\(\Leftrightarrow m^2-25=4m-4\)

\(\Leftrightarrow m^2-4m-21=0\)

=>(m-7)(m+3)=0

=>m=7 hoặc m=-3

 

 

 

23 tháng 12 2017

a, x 2 − 2 ( m + 1 ) x + m 2 + m − 1 = 0 (1)

Với m = 0, phương trình (1) trở thành:

  x 2 − 2 x − 1 = 0 Δ ' = 2  ;  x 1 , 2 = 1 ± 2

Vậy với m = 2 thì nghiệm của phương trình (1) là  x 1 , 2 = 1 ± 2

b) Δ ' = m + 2

Phương trình (1) có hai nghiệm phân biệt  ⇔ m > − 2

Áp dụng hệ thức Vi-ét, ta có:  x 1 + x 2 = 2 ( m + 1 ) x 1 x 2 = m 2 + m − 1

Do đó:

     1 x 1 + 1 x 2 = 4 ⇔ x 1 + x 2 x 1 x 2 = 4 ⇔ 2 ( m + 1 ) m 2 + m − 1 = 4 ⇔ m 2 + m − 1 ≠ 0 m + 1 = 2 ( m 2 + m − 1 ) ⇔ m 2 + m − 1 ≠ 0 2 m 2 + m − 3 = 0 ⇔ m = 1 m = − 3 2

Kết hợp với điều kiện  ⇒ m ∈ 1 ; − 3 2  là các giá trị cần tìm.

Ta có: \(\Delta'=2m^2+4>0\forall m\)

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-m^2-4\end{matrix}\right.\)

Mặt khác: \(x_1^2+x_2^2=20\)

\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\)

\(\Rightarrow4m^2+2m^2-12=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=\dfrac{3}{2}\end{matrix}\right.\)

  Vậy ...

12 tháng 5 2021

sai rồi thì phải

17 tháng 5 2021

a)PT có 2 nghiệm phân biệt
`<=>Delta>0`
`<=>(2m+3)^2+4(2m+4)>0`
`<=>4m^2+12m+9+8m+16>0`
`<=>4m^2+20m+25>0`
`<=>(2m+5)^2>0`
`<=>m ne -5/2`
b)Áp dụng vi-ét:
$\begin{cases}x_1+x_2=2m+3\\x_1.x_2=-2m-4\\\end{cases}$
`|x_1|+|x_2|=5`
`<=>x_1^2+x_2^2+2|x_1.x_2|=25`
`<=>(x_1+x_2)^2+2(|x_1.x_2|-x_1.x_2)=25`
`<=>(2m+3)^2+2[|-2m-4|-(-2m-4)]=25`
Với `-2m-4>=0<=>m<=-2`
`=>pt<=>(2m+3)^2-25=0`
`<=>(2m-2)(2m+8)=0`
`<=>(m-1)(m+4)=0`
`<=>` $\left[ \begin{array}{l}x=1\\x=-4\end{array} \right.$
`-2m-4<=0=>m>=-2=>|-2m-4|=2m+4`
`<=>4m^2+12m+9+8m+16=25`
`<=>4m^2+20m=0`
`<=>m^2+5m=0`
`<=>` \left[ \begin{array}{l}x=0\\x=-5\end{array} \right.$
Vậy `m in {0,1,-4,-5}`

12 tháng 4 2023

a) \(x^2-mx+2m-4=0\) nhận \(x=3\) là nghiệm nên:

\(3^2-m.3+2m-4=0\)

\(\Leftrightarrow9-3m+2m-4=0\)

\(\Leftrightarrow m-5=0\)

\(\Leftrightarrow m=5\)

Vậy phương trình trở thành: \(x^2-5x+6=0\) nhận x=3 là nghiệm vậy nghiệm còn lại là:

\(\Delta=\left(-5\right)^2-4.1.6=1\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)+\sqrt{1}}{2.1}=3\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)-\sqrt{1}}{2.1}=2\end{matrix}\right.\)

Vậy nghiệm còn lại là \(x=2\)

NV
19 tháng 1 2021

\(\Delta'=\left(m-1\right)^2-\left(m^2+m\right)=-3m+1>0\Rightarrow m< \dfrac{1}{3}\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2+m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{x_1+x_2+2}{2}\\x_1x_2=m^2+m\end{matrix}\right.\)

\(\Rightarrow x_1x_2=\left(\dfrac{x_1+x_2+2}{2}\right)^2+\dfrac{x_1+x_2+2}{2}\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m (bạn có thể rút gọn thêm nếu cần)