tìm x,y nguyên biết : 2xy-x-y=2
ai giải đúng mình sẽ tích cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x - 2xy + y = 0
<=> 2x - 4xy + 2y = 0
<=> 2x - 4xy + 2y - 1 = -1
<=> (2x - 4xy) - (1 - 2y) = -1
<=> 2x(1 - 2y) - (1 - 2y) = -1
<=> (2x - 1)(1 - 2y) = - 1
<=> 2x - 1 = -1 và 1 - 2y = 1
hoặc 2x - 1 = 1 và 1 - 2y = -1
Bạn tự giải 2 hệ đó ra nhé
Bạn tham khảo link này nha ! Có lời giải đó :
http://olm.vn/hoi-dap/detail/26954556179.html
Ta có: 2xy + y = 18 - 2x
=> 2xy + y - 18 + 2x = 0
=> y(2x + 1) + (2x + 1) = 19
=> (y + 1)(2x + 1) = 19
=> y + 1; 2x + 1 \(\in\)Ư(19) = {1; -1; 19; -19}
lập bảng :
2x + 1 | 1 | -1 | 19 | -19 |
y + 1 | 19 | -19 | 1 | -1 |
x | 0 | -1 | 9 | -10 |
y | 18 | -20 | 0 | -2 |
Vậy ...
\(2xy+y=18-2x\)
\(\Leftrightarrow2xy+2x+y+1=17\)
\(\Leftrightarrow2xy+2x+\left(y+1\right)=17\)
\(\Leftrightarrow2x\left(y+1\right)+\left(y+1\right)=17\)
\(\Leftrightarrow\left(y+1\right)\left(2x+1\right)=17\)
\(\Rightarrow\left(y+1\right)\)và \(\left(2x+1\right)\inƯ\left(17\right)=(\pm1:\pm17)\)
Lập Bảng
2x+1 | 1 | 17 | -1 | -17 |
y+1 | 17 | 1 | -17 | -1 |
x | 0 | 8 | -1 | -8 |
y | 16 | 0 | -18 | -2 |
5x+6⋮x+2
=>5(x+2)-4⋮x+2
Mà x+2⋮x+2 =>5(x+2)⋮x+2
=>4⋮x+2
=>x+2∈Ư(4)={-4;-2;-1;1;2;4}
=>x∈{-6;-4;-3;-1;0;2}
Vì x+2 ⋮ x+2; 5 ∈ N
=> 5(x+2) ⋮ x+2
=> 5x +10 ⋮ x+2
Mà 5x + 6 ⋮ x+2
=> (5x+10)-(5x+6) ⋮ x+2
=> 4 ⋮ x+2
=> x+2 thuộc tập ước của 4
Mà ước của 4 = {1;-1;2;-2;4;-4}
=> x+2 ∈ {1;-1;2;-2;4;-4}
=> x ∈ {-1;-3;0;-4;2;-6}
Vậy x ∈ {-1;-3;0;-4;2;-6}
Có (x-30).(y+2)=9
nên (x-30) va y+2 thuộc ước của 9
TH1:x-30=1;y+2=9
x=31;y=7
TH2:x-30=3;y+2=3
x=33;y=1
TH3:x-30=-1;y+2=-9
x=29;y=-11
TH3:x-30=-3;y+2=-3
x=-27;y=-5
mays mik bij lloi ko viết dấu đc bạn thông cảm nhé
2xy-x-y=2
=x(2y-1)-1/2(2y-1)=2+1/2
=(2y-1)(x-1/2)=5/2
=(2y-1)(x-1)=5/2.2=5
vì x,y thuộc Z nen (2y-1) thuoc Z vaf (x-1) thuoc Z
ta co: 5=1.5=5.1=-1.-5=-5.-1
roi ban xet 4 truong hop do ra roi tinh x,y nhe
Ta có : 2xy - x - y = 2
<=> 2xy - x = 2 + y
<=> x(2y - 1) = y + 2
=> x = \(\frac{y+2}{2y-1}\)
Vì x nguyên nên \(\frac{y+2}{2y-1}\) nguyên
Ta có ; \(\frac{y+2}{2y-1}=\frac{2y+4}{2y-1}=\frac{\left(2y-1\right)+5}{2y-1}=\frac{2y-1}{2y-1}+\frac{5}{2y-1}=1+\frac{5}{2y-1}\)
Để \(\frac{y+2}{2y-1}\) nguyên thì \(\frac{5}{2y-1}\) nguyên
Suy ra : 2y - 1 \(\in\) Ư(5) = {-5;-1;1;5}
Ta có bảng :