Tính
C=[1-\(\frac{1}{2}\)]+[1-\(\frac{1}{4}\)]+....+[1-\(\frac{1}{1024}\)]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-....-\frac{1}{1024}\)
\(=1-\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{4}\right)-.......-\left(\frac{1}{512}-\frac{1}{1024}\right)\)
\(=1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+....+\frac{1}{512}-\frac{1}{1024}\)
\(=-\frac{1}{1024}\)
\(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-....-\frac{1}{1024}=1-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
=> \(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
=> \(A=2A-A=1-\frac{1}{2^{10}}\)
=> \(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-....-\frac{1}{1024}=1-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(=1-A=1-\left(1-\frac{1}{2^{10}}\right)=1-1+\frac{1}{2^{10}}\)
\(=\frac{1}{2^{10}}\)
\(-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-.....-\frac{1}{1024}\)
\(=-1-\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{4}\right)-.....-\left(\frac{1}{512}-\frac{1}{1024}\right)\)
\(=-1-\left(1-\frac{1}{1024}\right)\)
\(=-1-\frac{1023}{1024}\)
\(=-\frac{2047}{1024}\)
Ai mún nhờ mk giải violympic vòng 1 300 đ ko
10 nghìn 1 lần nhé hoặc là xóa nick facebook (20 nghìn 1 lần)
Hoặc Hack facebook (10 nghìn 1 lên 500 )
\(2A=1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{512}\Rightarrow2A-A=1-\frac{1}{1024}=\frac{1023}{1024}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)
\(2A-A=\left[1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\right]-\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\right]\)
\(A=1-\frac{1}{2014}=\frac{2013}{2014}\)
\(\Rightarrow\left(-1\right)-\left(\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-...-\frac{1}{1024}\right)=\left(-1\right)-\frac{1}{1024}=\frac{-1025}{1024}\)
Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)
Đặ A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)(1)
=> 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\)(2)
Lấy (2) trừ (1) theo vế ta có :
2A - A = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)
=> A = \(1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{20}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}\)
\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^9}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{10}}=\frac{1023}{1024}\)
\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}=\frac{1}{1024}\)dùng phương pháp loại trừ
Đặt \(A=-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
Ta có:
\(A=\left(-1\right)-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(\left(-1\right)-A=\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(2\left[\left(-1\right)-A\right]=1-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{512}\)
\(2\left[\left(-1\right)-A\right]-\left[-1-A\right]=\left(1-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{512}\right)-\left(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\right)\)
\(\left[\left(-1\right)-A\right]=1-\frac{1}{1024}=\frac{1023}{1024}\)
\(A=\left(-1\right)-\frac{1023}{1024}\)
\(=\frac{-2047}{1024}\)
Ai mún nhờ mk giải violympic vòng 1 300 đ ko
10 nghìn 1 lần nhé hoặc là xóa nick facebook (20 nghìn 1 lần)
Hoặc Hack facebook (10 nghìn 1 lên 500 )
chào cháu
C= [1-\(\frac{1}{2}\)]+[1-\(\frac{1}{4}\)]+.....+[1-\(\frac{1}{2014}\)]
C=\(\frac{1}{2}\)+ \(\frac{3}{4}\)+.........+\(\frac{2013}{2014}\)
C= \(\frac{1}{2}\)-\(\frac{1}{2}\)+\(\frac{5}{4}\)-\(\frac{5}{4}\)+\(\frac{25}{12}\)-\(\frac{25}{12}\)+\(\frac{48}{49}\)-\(\frac{48}{49}\)+......+\(\frac{4056195}{4056196}\)
C=\(\frac{4056195}{4056196}\)