Tính nhanh: \(\dfrac{1}{11}+\dfrac{10}{11x111}+\dfrac{100}{111x1111}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\dfrac{1}{3}.3=\dfrac{7}{3}.3=7.\\ \left(\dfrac{2}{5}-\dfrac{3}{4}\right)-\dfrac{2}{5}=\dfrac{2}{5}-\dfrac{3}{4}-\dfrac{2}{5}=-\dfrac{3}{4}.\\ \dfrac{-10}{11}.\dfrac{4}{7}+\dfrac{-10}{11}.\dfrac{3}{7}+1\dfrac{10}{11}.\\ =\dfrac{-10}{11}\left(\dfrac{4}{7}+\dfrac{3}{7}-1\right).\\ =\dfrac{-10}{11}.\left(1-1\right)=0.\)
1) 2\(\dfrac{1}{3}\).3=\(\dfrac{7}{3}\).3=7.
2) (2/5 -3/4) -2/5 = 2/5 -3/4 -2/5 = -3/4.
3) \(\dfrac{-10}{11}.\dfrac{4}{7}+\dfrac{-10}{11}.\dfrac{3}{7}+1\dfrac{10}{11}=\dfrac{1}{11}\left(-\dfrac{40}{7}-\dfrac{30}{7}+21\right)=\dfrac{1}{11}.\left(-10+21\right)=1\).
\(a,A=\dfrac{\dfrac{5}{4}+\dfrac{5}{5}+\dfrac{5}{7}-\dfrac{5}{11}}{\dfrac{10}{4}+\dfrac{10}{5}+\dfrac{10}{7}-\dfrac{10}{11}}\\ =\dfrac{5.\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{10.\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}\\ =\dfrac{5}{10}\\ =\dfrac{1}{2}\)
Vậy \(A=\dfrac{1}{2}\)
\(b,B=\dfrac{2+\dfrac{6}{5}-\dfrac{6}{7}-\dfrac{6}{11}}{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}\\ =\dfrac{3.\left(\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}\right)}{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}\\ =3\)
Vậy \(B=3\)
tỉ số của a / b là (92 - 1/9 - 2/ 10 - 3/11 - ... - 92/100) trên 1/45 + 1/50 + ... + 1/500 :)) hay ngắn tắc hơn là A/B cho nhanh :)))))))))))))))
\(A=\left(1+1+...+1\right)-\left(\dfrac{1}{9}+\dfrac{2}{10}+...+\dfrac{92}{100}\right)\)𝓒𝓸́ 92 𝓼𝓸̂́ 1
\(A=\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+...+\left(1-\dfrac{92}{100}\right)\)
\(A=\dfrac{8}{9}+\dfrac{8}{10}+...+\dfrac{8}{100}\)
\(A=8.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)\)
\(B=\dfrac{1}{45}+\dfrac{1}{50}+...+\dfrac{1}{500}\)
\(B=\dfrac{1}{5}.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{8.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)}{\dfrac{1}{5}.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)}\\ \Rightarrow\dfrac{A}{B}=\dfrac{8}{\dfrac{1}{5}}=40\)
𝓥𝓪̣̂𝔂 𝓽𝓲̉ 𝓼𝓸̂́ 𝓬𝓾̉𝓪 𝓐 𝓿𝓪̀ 𝓑 𝓵𝓪̀ 40
b, \(K =\) \(\dfrac{75}{100}+\dfrac{18}{21}+\dfrac{19}{32}+\dfrac{1}{4}+\dfrac{3}{21}+\dfrac{13}{32}\)
\(K = \) \(\dfrac{3}{4}+\dfrac{18}{21}+\dfrac{19}{32}+\dfrac{1}{4}+\dfrac{3}{21}+\dfrac{13}{32}\)
\(K = \) \(\left(\dfrac{3}{4}+\dfrac{1}{4}\right)+\left(\dfrac{18}{21}+\dfrac{3}{21}\right)+\left(\dfrac{19}{32}+\dfrac{13}{32}\right)\)
\(K = \) \(1 + 1 + 1\)
\(K = \) \(3\)
\(B=\dfrac{1}{11}+\dfrac{1}{11^2}+\dfrac{1}{11^3}+...+\dfrac{1}{11^{99}}+\dfrac{1}{11^{100}}\\ 11B=1+\dfrac{1}{11}+\dfrac{1}{11^2}+...+\dfrac{1}{11^{98}}+\dfrac{1}{11^{99}}\\ 11B-B=1+\dfrac{1}{11}+\dfrac{1}{11^2}+...+\dfrac{1}{1^{99}0}-\dfrac{1}{11}-\dfrac{1}{11^2}-\dfrac{1}{11^3}-...-\dfrac{1}{11^{100}}\\ 10B=1-\dfrac{1}{11^{99}}\\ B=\dfrac{1-\dfrac{1}{11^{99}}}{10}\)
có : `1-1/(11^99)<1`
\(\Rightarrow\dfrac{1-\dfrac{1}{11^{99}}}{10}< \dfrac{1}{10}\)
hay `B<1/10`