Cho đường tròn tâm O đường kính AB. Lấy điểm C nằm trên đường tròn sao cho số đo cung AC gấp đôi số đo cung BC. Tiếp tuyến tại B với đường tròn tâm O cắt AC tại E. Gọi I là trung điểm của dây AC a) Chứng minh rằng tứ giác IOBE nội tiếp b) Chứng minh EB²=EC.EA c) Biết bán kính đường tròn tâm O bằng 2cm, tính diện tích tam giác ABE Vẽ hình và giải giúp e với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có
EB là tiếp tuyến đg (O) => FB vg vs OB => góc EBO = 90
Mà I là trung điểm của AC => OI vg vs AC => góc OIE = 90
=> t/g IOBE nội tiếp
b) Vì EB là tiếp tuyến
Góc EBC = góc BAC = 1/2 sđ cung EC
=> góc EBC = góc => EAB
Xét tam giác EBC và tam giác EAB có
Góc EBC = góc EAB (cmt)
Góc E chung
=> tam giác EBC đồng vs tam giác EAB (gg)
=> EB/EA = EC/EB
=> EB^2 = EA.EC
Xét ΔOBA vuông tại A có \(cosBOA=\dfrac{OA}{OB}=\dfrac{1}{2}\)
nên \(\widehat{BOA}=60^0\)
Xét ΔOAC có OA=OC và \(\widehat{AOC}=60^0\)
nên ΔOAC đều
=>\(sđ\stackrel\frown{AC}\left(nhỏ\right)=60^0\)
Số đo cung AC lớn là:
\(360-60=300^0\)
a: góc EAB=1/2*90=45 độ
=>góc AEB=45 độ
b: góc EFD=góc FAB+góc FBA=90 độ+góc DAB
góc ECD+góc ACD=180 độ
=>góc ECD=góc DBA
=>góc EFD+góc ECD=180 độ
=>CDFE nội tiếp
a: ΔOAC cântại O
mà OI là trung tuyến
nên OI vuông góc AC
góc OIE+góc OBE=180 độ
=>OIEB nội tiếp
b: góc ACB=1/2*180=90 độ
=>CB vuông góc AE
=>EB^2=EC*EA