Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối củNa tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N chứng minh rằng BM=CN ;BC<MN; đường thẳng vuông góc với MN tại giao điểm MN và BC luôn luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy trong ΔBAC cân tại A)
mà \(\widehat{ACB}=\widehat{ECN}\)(hai góc đối đỉnh)
nên \(\widehat{ABC}=\widehat{ECN}\)
hay \(\widehat{MBD}=\widehat{NCE}\)
Xét ΔMBD vuông tại D và ΔNCE vuông tại E có
DB=EC(cmt)
\(\widehat{MBD}=\widehat{NCE}\)(cmt)
Do đó: ΔMBD=ΔNCE(cạnh góc vuông-góc nhọn kề)
Suy ra: DM=EN(hai cạnh tương ứng)
a: Xét ΔMBD vuông tại D và ΔNCE vuông tại E co
MB=NC
góc MBD=góc NCE
=>ΔMBD=ΔNCE
=>MD=NE
b: Xet tứ giác MDNE có
MD//NE
MD=NE
=>MDNE là hình bình hành
=>MN cắt DE tại trung điểm của mỗi đường
=>I là trung điểm của DE
Tgiac ABC cân tại A => AB = AC và góc B = ACB
Mà góc ACB và góc NCE là 2 góc đối đỉnh => góc ACB = NCE
=> góc NCE = góc B
Xét tgiac MDB và NEC có:
+ góc MDB = NEC
+ BD = CE
+ góc B = NCE (cmt)
=> tgiac MDB = NEC (cgv-gn)
=> MD = NE
a: Xét ΔBDM vuông tại D và ΔCEN vuông tại E có
BM=CN
góc DBM=góc ECN=góc ACB
=>ΔBDM=ΔCEN
=>MD=EN
b: Xét tứ giác MDNE có
MD//EN
MD=EN
=>MDNE là hình bình hành
=>MN cắt DE tại trung điểm của mỗi đường
=>I la trung điểm của DE
c: Xét ΔABO vuông tại B và ΔACO vuông tại C có
AO chung
AB=AC
=>ΔABO=ΔACO
=>BO=CO
mà AB=AC
nên AO là trung trực của BC
a: Xét ΔMDB vuông tại D và ΔNEC vuông tại E có
BD=CE
góc DBM=góc ECN(=góc ACB)
Do đó; ΔMDB=ΔNEC
=>MD=NE
Xét tứ giác MDNE có
MD//NE
MD=NE
Do đó: MDNE là hình bình hành
=>MN cắt ED tại trung điểm của mỗi đường
=>I là trung điểm chung của MN và ED
b:
Kẻ AH vuông góc BC tại H
ΔABC cân tại A
mà AH là đường cao
nên AH là trung trực của BC
Gọi O là giao của AH với đường vuông góc với MN tại I
=>O nằm trên trung trực của BC
=>OB=OC
Xét ΔOMN có
OI vừa là đường cao, vừa là trung tuyến
=>ΔOMN cân tại O
=>OM=ON
Xét ΔOAB và ΔOAC có
OA chung
AB=AC
OB=OC
Do đó: ΔOAB=ΔOAC
=>góc OBA=góc OCA
Xét ΔOBM và ΔOCN có
OB=OC
BM=CN
OM=ON
Do đó: ΔOBM=ΔOCN
=>góc OBM=góc OCN
=>góc OCN=góc OCA=180/2=90 độ
=>OC vuông góc AC
=>O cố định