K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2021

Để \(|P|>P\)

=> P > 0

<=> \(\frac{\sqrt{x}-1}{\sqrt{x}+2}>0\)

<=> \(\sqrt{x}-1>0\)  ( vì \(\sqrt{x}+2>0\))

<=> \(\sqrt{x}>1\)

<=> \(x>1\)

Kết hợp cả ĐKXĐ đề bài cho rồi kết luận nhé

AH
Akai Haruma
Giáo viên
5 tháng 5 2021

Lời giải:

ĐK: $x\geq 0$
Để $|P|>P$ thì $P<0$

$\Leftrightarrow \frac{\sqrt{x}-1}{\sqrt{x}+2}<0$

$\Leftrightarrow \sqrt{x}-1<0$

$\Leftrightarrow 0\leq x< 1$

28 tháng 6 2019

1,

\(A=\frac{\sqrt{x-3}}{2}\) có giá trị nguyên nên \(\left(\sqrt{x}-3\right)⋮2\)

Suy ra x là số chính phương lẻ.

Vì x < 30 nên\(x\in\left\{1^2;3^2;5^2\right\}\) hay \(x\in\left\{1;9;25\right\}\)

28 tháng 6 2019

2,

Khi x là số nguyên thì \(\sqrt{x}\) hoặc là số nguyên (nếu x là số chính phương) hoặc là số vô tỉ (nếu x không phải số chính phương). Để \(B=\frac{5}{\sqrt{x-1}}\) là số nguyên thì \(\sqrt{x}\) không thể là số vô tỉ, do đó \(\sqrt{x}\) là số nguyên và \(\sqrt{x-1}\) phải là ước của 5 tức là √xx - 1 ∈ Ư(5). Để B có nghĩa ta phải có x \(\ge\)0 và x\(\ne\) 1. Ta có bảng sau:

\(\sqrt{x-1}\)1-15-5
\(\sqrt{x}\)206-4(loại)
\(x\)4036 

Vậy x\(\in\){4;0;36} (các giá trị này đều thoả mãn điều kiện x \(\ge\) 0 và x\(\ne\) 1).


 

6 tháng 3 2017

x2 + 2x + 1 chia hết cho x + 2

x(x + 2) + 1  chia hết cho x + 2

=> 1 chia hết cho x + 2

=> x + 2 thuộc Ư(1) = {1 ; -1}

Xét 2 trường hợp , ta có : 

x + 2 = 1 => x = -1

x + 2 = -1 = > x = -3 

23 tháng 9 2015

a) \(\frac{\sqrt{x}-2}{3\sqrt{x}}=-1\)

=>  \(-3\sqrt{x}=\sqrt{x}-2\)

=> \(4\sqrt{x}=2\)

=> \(x=\frac{1}{4}\)

b) \(\frac{\sqrt{x}-2}{3\sqrt{x}}