K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

1) 6x2+13x+7=0

6x2+6x+7x+7=0

6x(x+1)+7(x+1)=0

(6x+7)(x+1)=0

  1. x=-7/6 
  2. x=-1

2)2x2-9x+7=0

2X2-2x-7x+7=0

2x(x-1)+7(x-1)=0

(2x+7)(x-1)=0

x= -7/2

  1. x= 1
8 tháng 10 2021

\(a,\Leftrightarrow2x^2-10x-2x^2-x=-11\\ \Leftrightarrow-11x=-11\Leftrightarrow x=1\\ b,\Leftrightarrow x\left(x^2-6x+9\right)=0\\ \Leftrightarrow x\left(x-3\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\\ c,\Leftrightarrow x\left(x-2018\right)-2017\left(x-2018\right)=0\\ \Leftrightarrow\left(x-2017\right)\left(x-2018\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2018\end{matrix}\right.\)

1) Ta có: \(x^2-4x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

hay x=2

Vậy: S={2}

a: \(\Leftrightarrow\left(-x+3\right)\left(x+6\right)=18\)

\(\Leftrightarrow-x^2-6x+3x+18-18=0\)

\(\Leftrightarrow-x\left(x+3\right)=0\)

=>x=0 hoặc x=-3

b: \(\Leftrightarrow x\left(3x^2+6x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x^2+6x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+2x-\dfrac{4}{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x+1\right)^2=\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow x\in\left\{0;\dfrac{\sqrt{21}}{3}-1;\dfrac{-\sqrt{21}}{3}-1\right\}\)

c: =>x(3x-5)=0

=>x=0 hoặc x=5/3

d: =>(x-2)(x+2)=0

=>x=2 hoặc x=-2

31 tháng 1 2023

\(a,\) 

\(2x^2-5x-7=0\)

\(\Leftrightarrow2x^2+2x-7x+7\)

\(\Leftrightarrow2x\left(x+1\right)-7\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{7}{2}\end{matrix}\right.\)

\(\left(2x+2\right)\left(x+\dfrac{7}{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+2=0\\x+\dfrac{7}{2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy 2 pt ko tương đương

\(b,\left(2x-3\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x^2-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\pm2\end{matrix}\right.\)

\(6x^2=24\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)

Vậy 2 pt tương đương

a: 2x^2-5x-7=0

=>2x^2-7x+2x-7=0

=>(2x-7)(x+1)=0

=>x=7/2 hoặc x=-1

(2x+2)(x+7/2)=0

=>(x+1)(x+7/2)=0

=>x=-7/2 hoặc x=-1

=>Hai phương trình ko tương đương

b: (2x-3)(x^2-4)=0

=>(2x-3)(x-2)(x+2)=0

=>\(x\in\left\{\dfrac{3}{2};2;-2\right\}\)

6x^2=24

=>x^2=4

=>x=2 hoặc x=-2

=>Hai phương trình ko tương đương

e: =>x(x^3-4x^2-8x+8)=0

=>x[(x^3+8)-4x(x+2)]=0

=>x(x+2)(x^2-2x+4-4x)=0

=>x(x+2)(x^2-6x+4)=0

=>\(x\in\left\{0;-2;3+\sqrt{5};3-\sqrt{5}\right\}\)

g: =>2x^4+5x^3-6x^3-15x^2+6x^2+15x-2x-5=0

=>(2x+5)(x^3-3x^2+3x-1)=0

=>(2x+5)(x-1)^3=0

=>x=1 hoặc x=-5/2

h: =>(x^2+8x+7)(x^2+8x+15)+15=0

=>(x^2+8x)^2+22(x^2+8x)+120=0

=>(x^2+8x+10)(x^2+8x+12)=0

=>(x^2+8x+10)(x+2)(x+6)=0

=>\(x\in\left\{-2;-6;-4+\sqrt{6};-4-\sqrt{6}\right\}\)

7 tháng 11 2018

13 x - 3 2 x + 7 + 1 2 x + 7 = 6 x 2 - 9     Đ K X Đ : x ≠ ± 3   v à   x ≠ - 7 2 ⇔ 13 x + 3 x 2 - 9 2 x + 7 + x 2 - 9 2 x + 7 x 2 - 9 = 6 2 x + 7 x 2 - 9 2 x + 7

⇔ 13(x + 3) + x 2  – 9 = 6(2x + 7)

⇔ 13x + 39 +  x 2  – 9 = 12x + 42

⇔  x 2  + x – 12 = 0

⇔  x 2  – 3x + 4x – 12 = 0

⇔ x(x – 3) + 4(x – 3) = 0

⇔ (x + 4)(x – 3) = 0

⇔ x + 4 = 0 hoặc x – 3 = 0

      x + 4 = 0 ⇔ x = -4 (thỏa mãn)

      x – 3 = 0 ⇔ x = 3 (loại)

Vậy phương trình có nghiệm x = -4.