Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm E, E không trùng với 2 điểm B và A. Qua E kẻ đường thẳng song song với BC và cắt AC tại F.
CMR: a) BF>(EF+BC)/2
b) BE>(BC-EF)/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
a. Theo giả thiết: EI//AF
`=>\hat{EIB}=\hat{ACB}=\hat{ABC}=\hat{EBI}` (Do `\triangleABC` cân ở `A`)
`=>\triangleEBI` cân ở `E`
`=>EB=EI`
b. Theo giải thiết: BE=CF=>EI=CF`
Xét `\triangleOEI` và `\triangleOCF:`
`EI=CF`
`\hat{OEI}=\hat{OFC}`
`\hat{OIE}=\hat{OCF}`
`=>\triangleOEI=\triangleOFC(g.c.g)`
`=>OE=OF`
c. Ta có: `KB⊥AB` và `KC⊥AC`
`=>KB^2=KA^2-AB^2=KA^2-AC^2=KC^2`
`=>KB=KC`
Mà `BE=CF`
`=>KE^2=KB^2+BE^2=KC^2+CF^2=KF^2`
`=>KE=KF`
`=>\triangleEKF` cân ở `K`
Mà theo phần b. `OE=OF=>O` là trung điểm `EF`
`=>OK⊥EF`
tự kẻ hình :
a, có EI // AC (gt)
=> góc ACI = góc AIB (đồng vị)
có góc ACI = góc ABC do tam giác ABC cân tại A (gt)
=> góc EIB = góc EBI
=> tam giác EIB cân tại E (dh)
b, góc ACI = góc EIB (câu a)
góc ACI + góc FCO = 180
góc EIB + góc EIO = 180
=> góc FCO = góc EIO (1)
tam giác EIB cân tại E (câu a) => EI = EB (đn)
mà có EB = CF (gt)
=> FC = EI
xét tam giác COF và tam giác IOE có : góc CFO = góc OEI (so le trong CF // EI)
và (1)
=> tam giác COF = tam giác IOE (g-c-g)
=> FO = OE (đn)
tự kẻ hình :
a, có EI // AC (gt)
=> góc ACI = góc AIB (đồng vị)
có góc ACI = góc ABC do tam giác ABC cân tại A (gt)
=> góc EIB = góc EBI
=> tam giác EIB cân tại E (dh)
b, góc ACI = góc EIB (câu a)
góc ACI + góc FCO = 180
góc EIB + góc EIO = 180
=> góc FCO = góc EIO (1)
tam giác EIB cân tại E (câu a) => EI = EB (đn)
mà có EB = CF (gt)
=> FC = EI
xét tam giác COF và tam giác IOE có : góc CFO = góc OEI (so le trong CF // EI)
và (1)
=> tam giác COF = tam giác IOE (g-c-g)
=> FO = OE (đn)
a) Vì \(AB\) // \(EF\left(gt\right)\)
=> \(\widehat{BDF}=\widehat{EFD}\) (vì 2 góc so le trong).
Vì \(DE\) // \(BC\left(gt\right)\)
=> \(\widehat{EDF}=\widehat{BFD}\) (vì 2 góc so le trong).
Xét 2 \(\Delta\) \(BDF\) và \(EFD\) có:
\(\widehat{BDF}=\widehat{EFD}\left(cmt\right)\)
Cạnh DF chung
\(\widehat{BFD}=\widehat{EDF}\left(cmt\right)\)
=> \(\Delta BDF=\Delta EFD\left(g-c-g\right)\)
=> \(BD=EF\) (2 cạnh tương ứng).
Mà \(AD=BD\) (vì D là trung điểm của \(AB\))
=> \(AD=EF.\)
b) Vì \(DE\) // \(BC\left(gt\right)\)
=> \(\widehat{ADE}=\widehat{DBF}\) (vì 2 góc so le trong) (1).
Vì \(AB\) // \(EF\left(gt\right)\)
=> \(\widehat{DBF}=\widehat{EFC}\) (vì 2 góc so le trong) (2).
Từ (1) và (2) => \(\widehat{ADE}=\widehat{EFC}.\)
Xét 2 \(\Delta\) \(ADE\) và \(EFC\) có:
\(AD=EF\left(cmt\right)\)
\(\widehat{ADE}=\widehat{EFC}\left(cmt\right)\)
\(\widehat{DAE}=\widehat{FEC}\) (2 góc đồng vị do \(EF\) // \(AD\))
=> \(\Delta ADE=\Delta EFC\left(g-c-g\right)\)
c) Theo câu b) ta có \(\Delta ADE=\Delta EFC.\)
=> \(AE=EC\) (2 cạnh tương ứng).
Chúc bạn học tốt!
a , Vì \(\Delta ABC\)cân tại A => \(\widehat{ACB}=\widehat{ABC}\)
mà E \(\in\)AB => \(\widehat{ACB}=\widehat{EBK}\)( 1 )
Vì EK // AC => \(\widehat{EKB}=\widehat{ACB}\)( 2 )
TỪ ( 1 ) và ( 2 ) => \(\widehat{EBK}=\widehat{EKB}\)
=> \(\Delta EBK\)cân tại E
b , Đề bài thiếu :>