K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2022

`Answer:`

undefined

a. Theo giả thiết: EI//AF

`=>\hat{EIB}=\hat{ACB}=\hat{ABC}=\hat{EBI}` (Do `\triangleABC` cân ở `A`)

`=>\triangleEBI` cân ở `E`

`=>EB=EI`

b. Theo giải thiết: BE=CF=>EI=CF`

Xét `\triangleOEI` và `\triangleOCF:`

`EI=CF`

`\hat{OEI}=\hat{OFC}` 

`\hat{OIE}=\hat{OCF}`

`=>\triangleOEI=\triangleOFC(g.c.g)`

`=>OE=OF`

c. Ta có: `KB⊥AB` và `KC⊥AC`

`=>KB^2=KA^2-AB^2=KA^2-AC^2=KC^2`

`=>KB=KC`

Mà `BE=CF`

`=>KE^2=KB^2+BE^2=KC^2+CF^2=KF^2`

`=>KE=KF`

`=>\triangleEKF` cân ở `K`

Mà theo phần b. `OE=OF=>O` là trung điểm `EF`

`=>OK⊥EF`

18 tháng 2 2020

tự kẻ hình :

a, có EI // AC (gt) 

=> góc ACI = góc AIB (đồng vị)

có góc ACI = góc ABC do tam giác ABC cân tại A (gt)

=> góc EIB = góc EBI 

=> tam giác EIB cân tại E (dh)

b, góc ACI = góc EIB (câu a)

góc ACI + góc FCO = 180

góc EIB  + góc EIO = 180

=> góc FCO = góc EIO                (1)

tam giác EIB cân tại E (câu a) => EI = EB (đn) 

                                                      mà có EB = CF (gt)  

=> FC = EI

xét tam giác COF và tam giác IOE có : góc CFO = góc OEI (so le trong CF // EI)

và (1)

=> tam giác COF = tam giác IOE (g-c-g)

=> FO = OE (đn)

23 tháng 6 2022

tự kẻ hình :

a, có EI // AC (gt) 

=> góc ACI = góc AIB (đồng vị)

có góc ACI = góc ABC do tam giác ABC cân tại A (gt)

=> góc EIB = góc EBI 

=> tam giác EIB cân tại E (dh)

b, góc ACI = góc EIB (câu a)

góc ACI + góc FCO = 180

góc EIB  + góc EIO = 180

=> góc FCO = góc EIO                (1)

tam giác EIB cân tại E (câu a) => EI = EB (đn) 

                                                      mà có EB = CF (gt)  

=> FC = EI

xét tam giác COF và tam giác IOE có : góc CFO = góc OEI (so le trong CF // EI)

và (1)

=> tam giác COF = tam giác IOE (g-c-g)

=> FO = OE (đn)

3 tháng 12 2019

a) Vì \(AB\) // \(EF\left(gt\right)\)

=> \(\widehat{BDF}=\widehat{EFD}\) (vì 2 góc so le trong).

\(DE\) // \(BC\left(gt\right)\)

=> \(\widehat{EDF}=\widehat{BFD}\) (vì 2 góc so le trong).

Xét 2 \(\Delta\) \(BDF\)\(EFD\) có:

\(\widehat{BDF}=\widehat{EFD}\left(cmt\right)\)

Cạnh DF chung

\(\widehat{BFD}=\widehat{EDF}\left(cmt\right)\)

=> \(\Delta BDF=\Delta EFD\left(g-c-g\right)\)

=> \(BD=EF\) (2 cạnh tương ứng).

\(AD=BD\) (vì D là trung điểm của \(AB\))

=> \(AD=EF.\)

b) Vì \(DE\) // \(BC\left(gt\right)\)

=> \(\widehat{ADE}=\widehat{DBF}\) (vì 2 góc so le trong) (1).

\(AB\) // \(EF\left(gt\right)\)

=> \(\widehat{DBF}=\widehat{EFC}\) (vì 2 góc so le trong) (2).

Từ (1) và (2) => \(\widehat{ADE}=\widehat{EFC}.\)

Xét 2 \(\Delta\) \(ADE\)\(EFC\) có:

\(AD=EF\left(cmt\right)\)

\(\widehat{ADE}=\widehat{EFC}\left(cmt\right)\)

\(\widehat{DAE}=\widehat{FEC}\) (2 góc đồng vị do \(EF\) // \(AD\))

=> \(\Delta ADE=\Delta EFC\left(g-c-g\right)\)

c) Theo câu b) ta có \(\Delta ADE=\Delta EFC.\)

=> \(AE=EC\) (2 cạnh tương ứng).

Chúc bạn học tốt!

31 tháng 1 2021

A B C E F K

a , Vì \(\Delta ABC\)cân tại A => \(\widehat{ACB}=\widehat{ABC}\)

mà E \(\in\)AB => \(\widehat{ACB}=\widehat{EBK}\)( 1 )

Vì EK // AC => \(\widehat{EKB}=\widehat{ACB}\)( 2 )

TỪ ( 1 ) và ( 2 ) => \(\widehat{EBK}=\widehat{EKB}\)

=> \(\Delta EBK\)cân tại E

b , Đề bài thiếu :>