Cho tam giác ABC vuông tại A, đường phân giác BD (D thuộc AC) . Kẻ DE vuông BC (E thuộc BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng: a) tam giác ABD =tam giác EBD b) chứng minh BD vuông góc với CF c) chứng minh EDF thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
nên BA=BE và DA=DE
Ta có: BA=BE
nên B nằm trên đường trung trực của AE\(\left(1\right)\)
Ta có: DA=DE
nên D nằm trên đường trung trực của AE\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AE
c: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
AF=EC
Do đó: ΔADF=ΔEDC
Suy ra: DF=DC
hay ΔDFC cân tại D
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>E,D,F thẳng hàng
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do dó: ΔBAD=ΔBED
=>DA=DE
b: Sửa đề: BD vuông góc với AE
Ta có: BA=BE
DA=DE
Do đó; BD là trung trực của AE
=>BD vuông góc với AE
c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
a). Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
BD là cạnh chung
Góc ABD = góc EBD (đường phân giác BD)
=> tam giác ABD=tam giác EBD (cạnh huyền-góc nhọn)
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)
b) Ta có: ΔBAD=ΔBED(cmt)
nên DA=DE(hai cạnh tương ứng)
Ta có: BA=BE(gt)
nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DA=DE(cmt)
nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE(Đpcm)
Sửa đề: BA=BE
a) Xét ΔBAD và ΔBED có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔBAD=ΔBED(c-g-c)
Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
hay DE⊥BC(đpcm)
a/ Xét \(\Delta ABD\)và \(\Delta EBD\)
BA=BE (gt); BD chung
\(\widehat{ABD}=\widehat{EBD}\)(gt)
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)
b/
\(\Delta ABD=\Delta EBD\left(cmt\right)\Rightarrow\widehat{BAD}=\widehat{BED}=90^o\Rightarrow DE\perp BC\)
c/
Ta có
BE=BA (gt); AF=CE (gt)
=> BE+CE=BA+AF => BC=BF => tg BCF cân tại B
Mà BD là phân giác \(\widehat{ABC}\)
\(\Rightarrow BD\perp CF\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)
Mà \(CA\perp BF\)
=> D là trực tâm của \(\Delta BCF\Rightarrow FD\perp BC\) mà \(DE\perp BC\) => FD trùng DE (từ 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho) => E, D, F thẳng hàng
hình vào tcn cho mình thay G là điểm D vì mình nhầm trọng tâm của tam giác
a) Xét tam giác ABD và tam giác EBD có:
AB=BE (gt)
^ABD=^EBD (^ABD là tia phân giác)
BD chung
=> tam giác ABD = tam giác EBD ( c.g.c )
b) Vì ABC là tam giác vuông tại A
=> tam giác ABD là tam giác vuông tại A
Mà: tam giác ABD = tam giác EBD ( c.g.c )
=> ^BED=^BAD= 90o
=> DE_|_BC (đpcm)
c) Nối F và C lại với nhau
Vì: FA=FB ( gt)
Mà CA_|_FB ( tam giác ABC _|_ tại A)
=> CA là đg trung trực của tam giác ABC
=> CA là đg trung tuyến của tam giác ABC
Mà tia phân giác ABC cắt AC tại D
=> D là trọng tâm của tam giác ABC
=> D,E,F thằng hàng (đpcm)
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E co
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA+AF=BF
BE+EC=BC
mà BA=BE; AF=EC
nên BF=BC
=>ΔBFC cân tại B
mà BD là phângíac
nên BD vuông góc CF
c: Xet ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc EDC+góc FDC=180 độ
=>E,D,F thẳng hàng