Cho trước 20 điểm trong đó chỉ có 3 điểm thẳng hàng, ngoài ra không còn 3 điểm nào thẳng hàng. Vẽ các đường thẳng đi qua các cặp điểm trong các điểm đã cho. Hỏi vẽ được bao nhiêu đường thẳng?
Giải thích cách làm.
Mình đang cần gấp. Cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cứ mỗi 1 cặp thì vẽ được 1 đường thẳng
=>9 điểm thì được 4 cặp và 1 điểm
vì đề bảo các cặp => 4x1=4(đường thẳng)
xét đề bài ta thấy: Có 2 trường hợp xảy ra:
1. Sẽ có 2 điểm thẳng hàng khác 5 điểm đã cho
Lúc có tất cả 23 đường thẳng
2.Tất cả điểm còn lại không thẳng hàng
Lúc đó sẽ có tất cả 27 đường thẳng
qua 2 điểm ta vẽ được 1 đường thẳng
chọn 1 điểm bất kì trong 9 điểm đã cho ta vẽ đk 9 đt
mà 8 điểm còn lại đều có thể làm như thế nên số đt vẽ đk là : 9.8=72(đt)
nhưng như v số đt đã đk tính 2 lần nên chỉ vẽ đk là : 72 : 2 =36 (đt) (1)
nhưng trong đó có đúng 5 điểm thẳng hàng nên số đt giảm đi 1 (2)
từ (1) và (2) => số đường thẳng thực tế vẽ đk là : 36 - 1= 35 (đt)
bài này mk k chắc chắn là đúng đâu vì mk chỉ nhớ sơ sơ cách giải thôi, vì v nếu mk có sai thì cho mk sorry nhá ^^
a)Nếu trong 6 điểm đó không có ba điểm nào thẳng hàng thì sẽ vẽ được số đường thẳng là
\(\frac{6.\left(6-1\right)}{2}=\frac{6.5}{2}=15\)(đường thẳng)
b) Nếu 100 điểm trong đó không có 3 điểm nào thẳng hàng thì vẽ được số đường thẳng đi qua các cặp điểm là:
\(\frac{100.\left(100-1\right)}{2}=4950\)(đường thẳng)
a: TH1: Chọn 1 điểm trong 2 điểm M,N; 1 điểm trong 3 điểm P,Q,R
Số cách chọn 1 điểm trong 2 điểm M,N là 2 cách
Số cách chọn 1 điểm trong 3 điểm P,Q,R là 3 cách
=>Có 2*3=6(cách)
TH2: Vẽ đường thẳng PQR
=>Có 1 cách
TH3: Vẽ đường thẳng MN
=>Có 1 cách
Tổng số đường thẳng là:
6+1+1=8(đường)
b: TH1: Chọn 1 điểm trong 5 điểm thẳng hàng, chọn 1 điểm trong 4 điểm không thẳng hàng
Số cách chọn 1 điểm trong 5 điểm thẳng hàng là 5 cách
Số cách chọn 1 điểm trong 4 điểm không thẳng hàng là 4 cách
=>Có 5*4=20 đường thẳng
TH2: Vẽ 1 đường thẳng đi qua 5 điểm thẳng hàng
=>Có 1 đường thẳng
TH3: Chọn 2 điểm trong 4 điểm không thẳng hàng
=>Có \(C^2_4=6\left(đường\right)\)
Số đường thẳng tất cả là:
20+1+6=27(đường)
Giả sử trong 9 điểm ko có 3 điểm nào thẳng hàng thì vẽ đc: 9.8 : 2 = 36 (đường thẳng)
Giả sử trong 5 điểm ko có 3 điểm nào thẳng hàng thì vẽ đc: 5.4 : 2 = 10 (đường thẳng)
Mà qua 5 điểm thẳng hàng chỉ vẽ đc 1 đường thẳng.
Số đường thẳng giảm đi là: 10 - 1 = 9 (đường thẳng)
Vậy qua 9 điểm trong đó có đúng 6 điểm thẳng hàng thì vẽ đc: 36 - 9 = 27 (đường thẳng)
Bài này không cần hình
Số đường thẳng vẽ được là:
1+3*17+\(C^3_{17}=732\left(đường\right)\)